Memory devices for neuromorphic computing

Fabien ALIBART IEMN-CNRS, Lille

Trad: Toutes les questions que je me suis posé sur le neuromorphique sans jamais (oser) les poser

Introduction: Why ANNet

Increase of Fault (nanoscale engineering)

Saturation of clock frequency
+
Energy consumption

New needs for computing Recognition, Mining, Synthesis (Intel)

SEMICONDUCTOR TECHNOLOGY CHALLENGES

Von Neumann bottleneck

Shift toward a new paradigm for computation

BIO-INSPIRED COMPUTING to match the brain performances (low power consumption, fault tolerant, performances for RMS)

NNET directions

Supercomputer resources Purely digital

10¹¹ neurons 10¹⁵ synapses

Emerging nanotechnologies New architecture concepts and integration strategies

Custom IC, Mix analog/digital Multichip approach,...
i.e. with conventional technologies

BNNs vs ANNs

Biological neural network

Artificial neural network

Input weighting

Weight adaptation

The memory is in the processing unit (Direct solution to Von Neumann bottleneck!)

Neuromorphic in between

Outline

Intro to Artificial Neural Network (ANNs)

Intro to biological Neural Network (BNNs)

Nanodevices for ANNs

Nanodevices for BNNs

STDP: somewhere in between

ANNs: basics

Rosenblatt, 1957

Classification of vectors (datas)

Delta rule

Pre-neurons

Training/learning: find the optimal weight

- No analytical solution
- Learning algorithms: iterative correction based on known data

Backpropagation

ANNs: basics

Practically, we can do: Pattern classification, Clustering, Prediction...

ANNs: applications

7840 symapses

- 256x256 pixel array
- 1000 classes

- Trained with stochastic gradient descent on two NVIDIA GPUs for about a week
- 650,000 neurons
- 60,000,000 parameters

630,000,000 connections

ANNs

ANNs:

- Practical application will required ulra high density of nanodevices
- Main challenge: GPU or FPGA are serious challengers

BNNs: neurons

The neuron membrane can be seen as a transmission line (RC) When the membrane potential reach a threshold, a spike is triggered

- Currents are ionic
- Low speed of propagation
- Active devices (soma and Ranvier's node)

BNNs: synapses Nerve impuls

- The AP release neurotransmitters from the preneuron to the post neuron receptors
- Neurotransmitters open ionic channels

Ligand-gated

Ionic concentration change the polarization of the post-neuron

e.p.s.p. potentiation, S1 (%)

85

30Hz

0.2mV

200ms

BNNs: learning

Learning in BNNs:

Who fire together wire together, (Hebbs)

$$\frac{dw_{ij}}{dt} \propto a_i \cdot a_j$$

Synaptic adaptation

$$\frac{dw_{ij}}{dt} \propto a_i + a_j$$

Example, the BCM learning rule:

$$\frac{dw_{ij}}{dt} = \varphi(a_j(t)) \cdot a_i(t) - \varepsilon w_{ij}$$

$$\varphi(a_j) < 0$$
 for $a_j < \theta_m$ & $\varphi(a_j) > 0$ for $a_j > \theta_m$

BNNs: learning with STDP

Variation of Hebbs rule

Unsupervised

•

BNNs:

- No charges (i.e. electrons), only ions
- Slow, with rich dynamics
- Still unsolved issues
 - Basics of computing in the brain (coding,...)
 - What do we really need for computing (for practical applications)

Neuromorphic: Main stream for nanodevices

The crossbar structure is the perfect architecture for massively parallel processing

top

wire level

similar two-terminal devices at each

crosspoint

Footprint 4F² 10¹² devices/cm²

NANO FOR ANNS

Crossnet V_j i = 1 2 ... N i' = 1 2 ... n

L= 2n² +1 states From binary...

... to multilevel...

ANNs: synapse, digital or analog?

RTARGET (a) $V_{prog}(k)$ Adaptive programming cell algorithm (b) 107 Switching: LPS -> RPS Resistance (Ohm) RTARGET error margin 10⁴ 0.5 2.5 Vg (Volt)

Papandreou, 2011

ANNs: the analog synapse

F. Alibart et al. Nanotechnology, 23 075201, 2012

W. Lu, Nanoletters, 2011

ANNs: implementations

- 50x50 pasive crossbar array
- Binary operation (multilevel, more or less)
- CBRAM technology

ANNs: implementations

Strukov, 2015

12x12 Xbar array (TiO2 memristive devices)

- Online training (variation of delta rule)
- Three classes, 60 synapses

CARNO

Ideal

Burr, IEDM 2014

ANNs: implementations

- Demo of multilayer perceptron (with backprop)
- 165000 PCM analog synapses

ANNs: implementations

Crossbar, IEDM, 2014

- Record density 4Mb
- Binary only
- 100nm half pitch
- Fully functionnal!

Nano for ANNs

 Still a huge gap betwen requirements and what is available (from the memory perspectives)

 Do we need learning (i.e. smart memory) or pure memory (i.e. storage + analog)

Co-integration still not demonstrated

NANO FOR BNNs

BNNs: synaptic plasticity (1)

STP

(Alibart, Adv. Funct. Mat, 2011

BNNs: synaptic plasticity (2)

BNNs: network scale implementations

Nano for BNNs

Still very emerging

 No clear idea of applications but a very complex (and exciting!) field

 Can we map BNNs (ionic systems) with electronic devices (instead of ionic)

NANO IN BETWEEN: STDP

STDP with memristors

STDP: practical implementations

STDP: triplet rule

STDP

No hardware demo at the network level

One layer OK, what about multi-layers?

STDP but what else?

Concluding remarks

- Neuromorphic in between BNNs and ANNs. Maybe an issue for visibility (what is our community?)
- Neuromorphic as a bridge between ANNs and BNNs?
- Doing more than identifying neuromorphic in nano, it is time to built it!

(One final tip: The hippocampus is not an animal)

