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Efficient population coding 

Linear Decoder
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Minimize:
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Minimize:

Greedy spike rule:

General case



General case: efficient LIF network



Equivalent to predictive encoder
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Learning the connections



Learning

Ralph 
Bourdoukan

Membrane potential = prediction error 



Learning
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E/I Balance = Minimize V
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Learning the recurrent connections

Whenever spikes: 
Ralph 
Bourdoukan
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Postsynaptic



Spike time dependent plasticity

Post-synaptic injected current
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Spike time dependent plasticity
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Learning the optimal weights



Learning the feedforward connections

Wieland Brendel

Pietro Vertechi



Learning the feedforward connections

When j spikes:

Wieland Brendel

Pietro Vertechi

For uncorrelated inputs
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Learning the feedforward connections
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• Learning E/I balance = learning maximally efficient neural coding.

• From input statistics, model-free predictions for plasticity, firing
statistics and tuning properties of spiking network.

Implications
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Neural variability = Degeneracy, not noise
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Neural variability = Degeneracy, not noise

Predi-spike Independent Poisson

Time
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E/I balance = enforcing an efficient neural code.

Neural variability = degeneracy, not noise. 
Degeneracy = robustness, not redundancy.  
Single spikes are RELEVANT. 

Cortical networks might be much more precise than 
previously thought. 



Tuning curves = network solution

Activity of one neuron
depends on all other neurons
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If  firing rate could be negative…

Tuning curves = network solution



David Barrett

Tuning curves = network solution

r1
= r2 –r1r2

But firing rates can’t be negative …
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Amplitude tuning: Direction tuning:

Non linear, heterogeneous tuning curves

Tuning curves = network solution
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« Noise » correlations:

Neural variability = Degeneracy, not noise
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Inactivations (e.g. halorhodopsin)

Robust to neural death, connection noise, background noise, synaptic failure…

The network is extremely robust



David Barrett Nuno Calaim



David Barrett

Ablate those neurons
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Visual orientation tuning

David Barrett

Model Data (Crook and Eysel, 1992) 
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Neural responses= network-level solutions 

• Tuning curves are highly context dependent. 

• E/I balance = maximal robustness.  

• Albeit encoding is complex, decoding is simple. 

Larger networks may be easier to characterize than single cells.

The brain might not be as “complicated” as it looks. 
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Level of degeneracy?
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What if there are synaptic delays?

Or… 

More inputs

Sparse connections

Synaptic failure

…ect….

Matty Chalk



Oscillations and predictive coding
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Correlated oscillations in membrane potential
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Synchroneous oscillations in excitation and inhibition
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Implementing a dynamical system
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Harmonic damped oscillator
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Effect of network size
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Extension to temporal kernels: functional GLMs

Fleur Zeldenrust



Type I and Type II cells = different filter types

Fleur Zeldenrust



Quiescent “up” states

In the model:

Veronika Koren

Linear cost (threshold): Dompting the noise



With synaptic delays, topology
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Log(proportion of recorded cells) 

Independent Poisson

Balanced network
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Neural variability = Degeneracy, not noise
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E/I
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Neural variability = Degeneracy, not noise
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Adaptation as cost optimization

Cumulative cost for high firing rates



Adaptation as cost optimization

Cumulative cost of firing 

Activity dependent suppressionFeedforward Input Recurrent inhibition
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Precise, costly Imprecise, cheap

Adaptation as cost optimization
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Cost, adaptation and homeostasis
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Cost

Accuracy
Trade-off

Precise, costly

Imprecise, cheap



Time

Small weights, 
large firing rates

large weights, 
small firing rates
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Adaptation Adaptation + E/I balance

Cost, adaptation and homeostasis
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Adaptation

Adaptation + 
E/I Balance

Presented stimuli: 
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Population coding

Many unreliable neurons…
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