

Christian Machens

Efficient coding in spiking networks

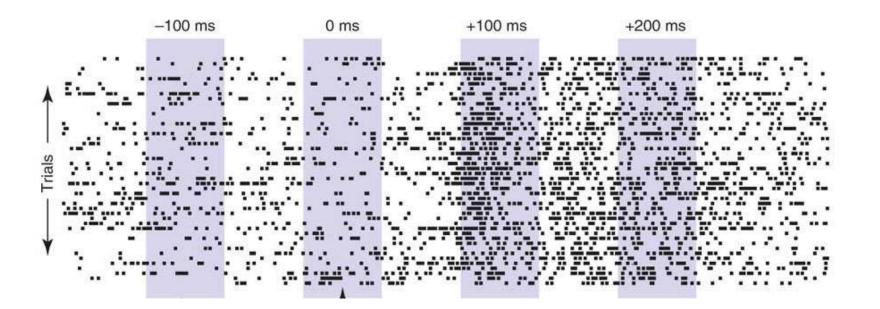
A normative account for E/I balance

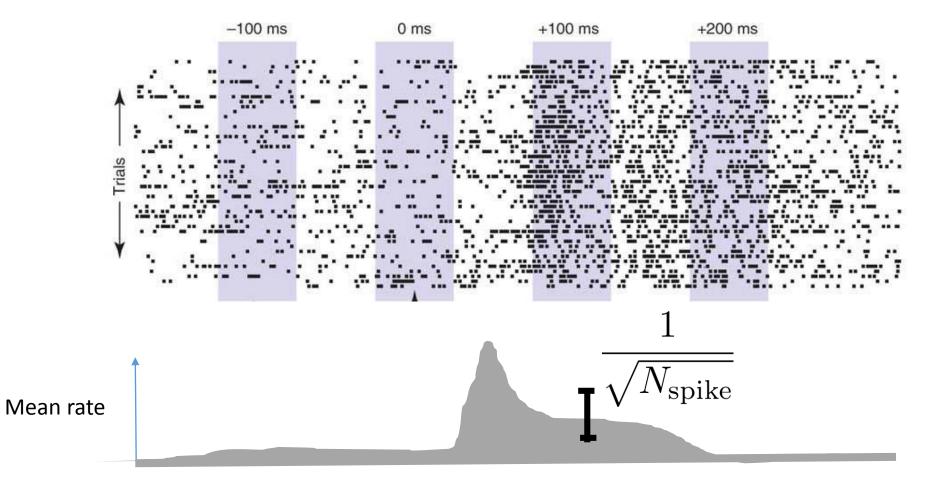
Sophie Deneve

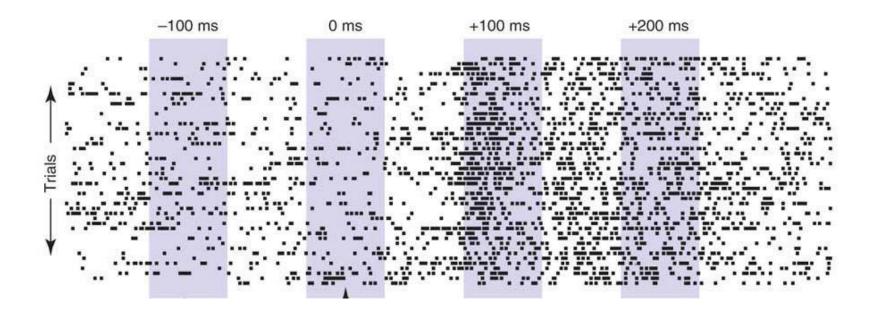
Ecole Normale Supérieure, Paris

Agence Nationale pour la Recherche (ANR) James S. McDonnell Foundation European research council (ERC)

European Research Council

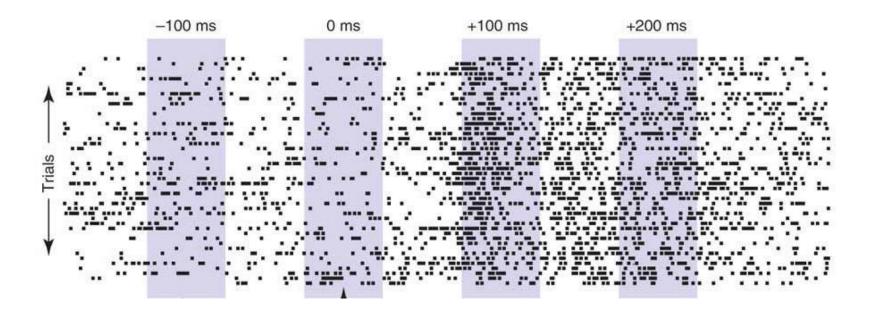






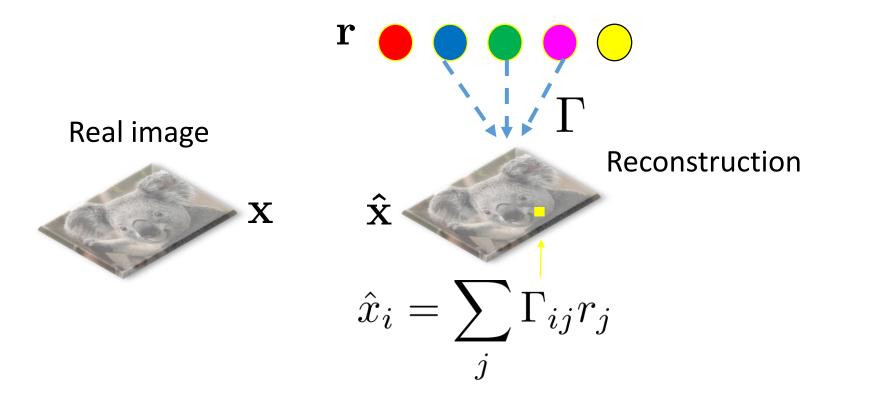
How?

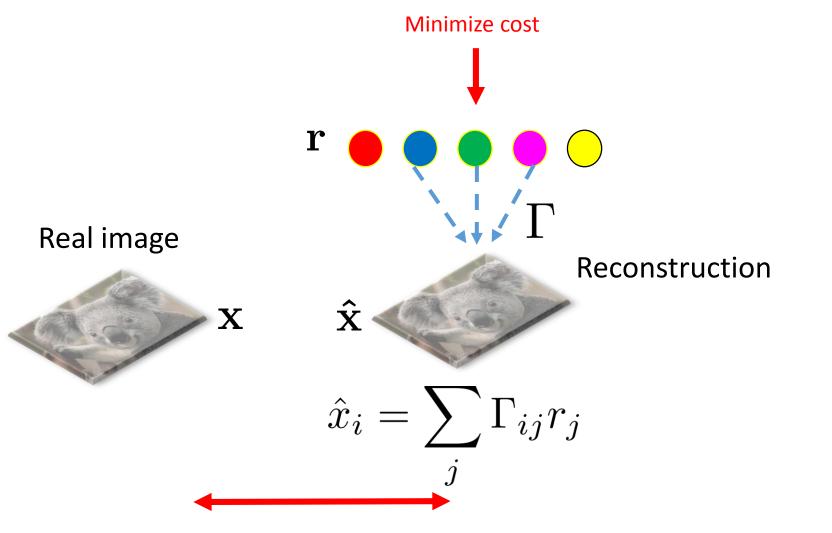
Excitatory – Inhibitory balance



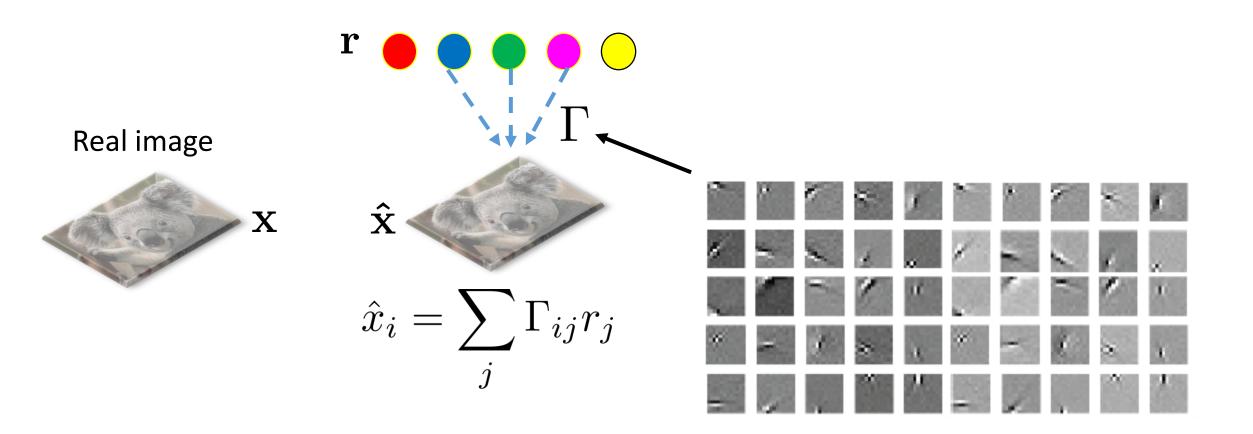
WHY?????

Real image



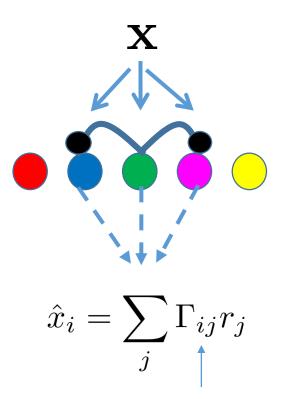


Minimize reconstruction errors



Efficient **population** coding

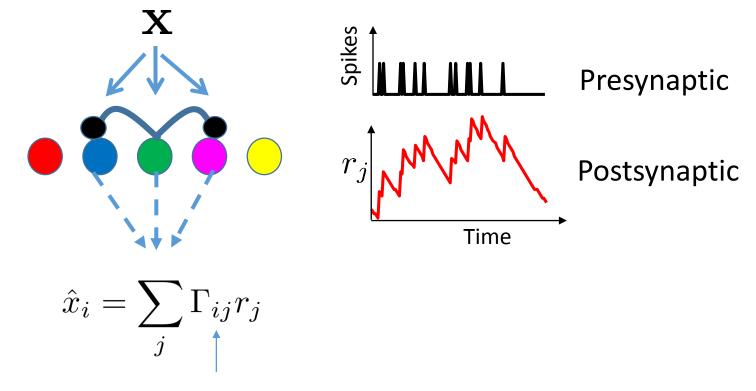
$$(\mathbf{r}, \Gamma) = \underset{\mathbf{r}^*, \Gamma^*}{\operatorname{arg\,min}} \left(\|\mathbf{x} - \hat{\mathbf{x}}\|^2 + \operatorname{Cost}(\mathbf{r}^*) \right)$$



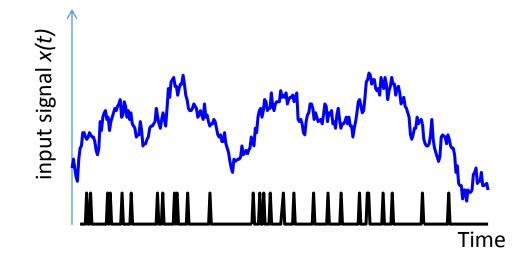
Linear Decoder

Efficient **population** coding **WITH SPIKES**

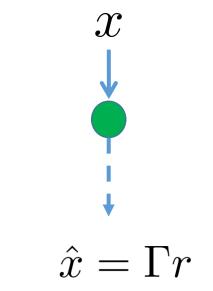
$$(\mathbf{r}, \Gamma) = \underset{\mathbf{r}^*, \Gamma^*}{\operatorname{arg\,min}} \left(\|\mathbf{x} - \hat{\mathbf{x}}\|^2 + \operatorname{Cost}(\mathbf{r}^*) \right)$$

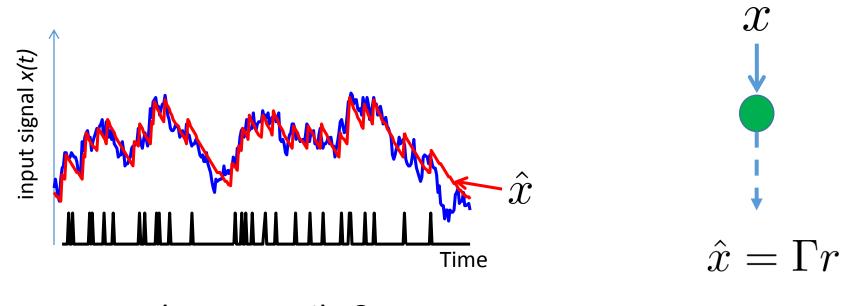


Linear Decoder

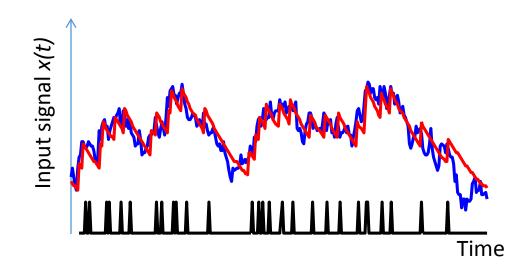


When to spike?





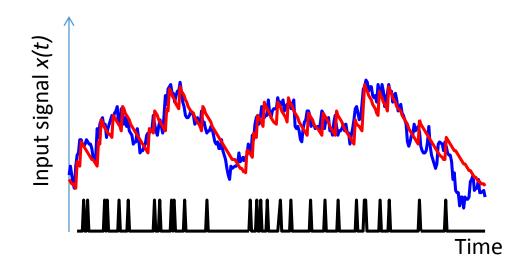
When to spike?



Minimize:

$$E = \left(x - \hat{x}\right)^2$$

When to spike?

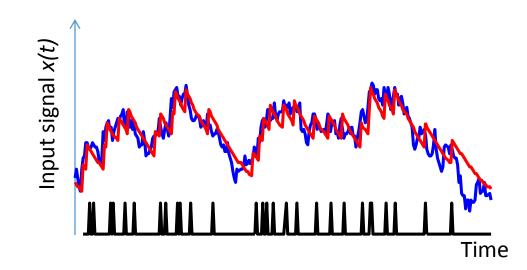


Minimize:

$$E = \left(x - \hat{x}\right)^2$$

Greedily spike when

 $E^{\text{spike}} < E^{\text{nospike}}$ $(x - \hat{x} - \Gamma)^2 - (x - \hat{x})^2 < 0$

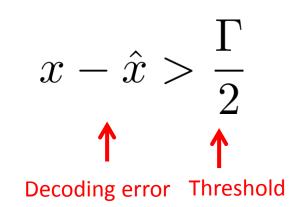


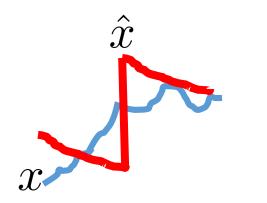
Minimize:

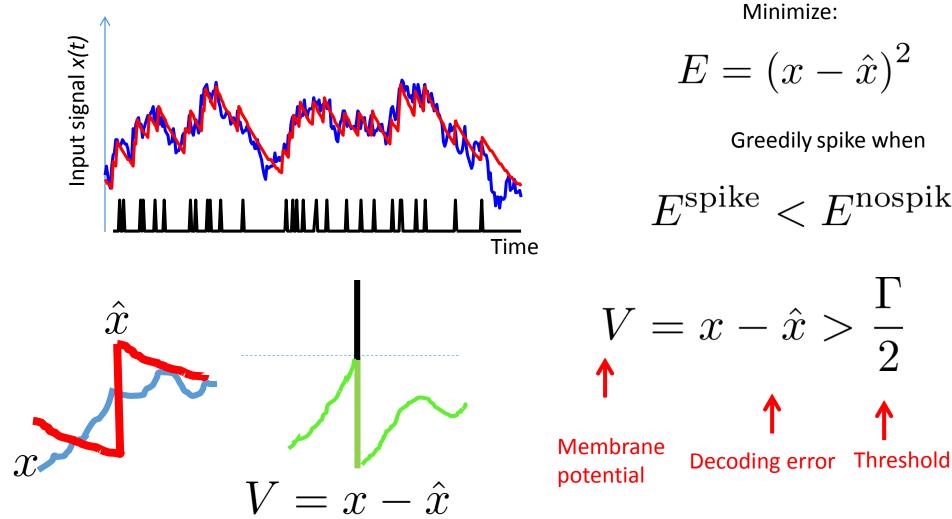
$$E = \left(x - \hat{x}\right)^2$$

Greedily spike when

 $E^{\text{spike}} < E^{\text{nospike}}$

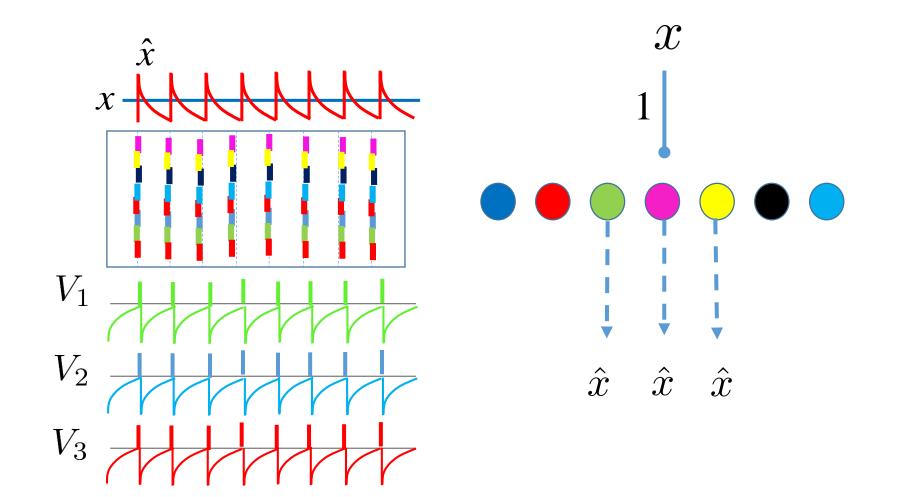




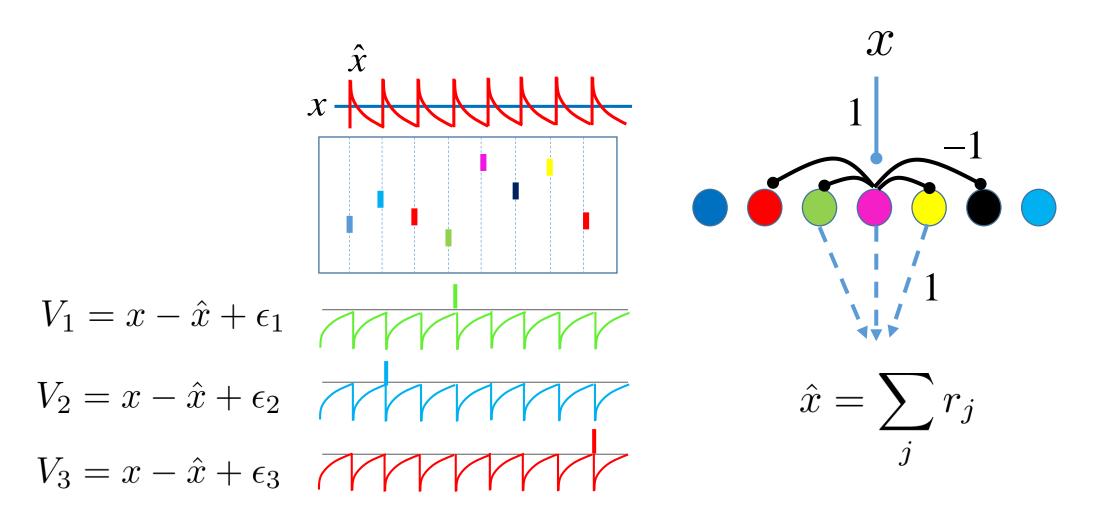


 $E^{\text{spike}} < E^{\text{nospike}}$

Homogeneous Network



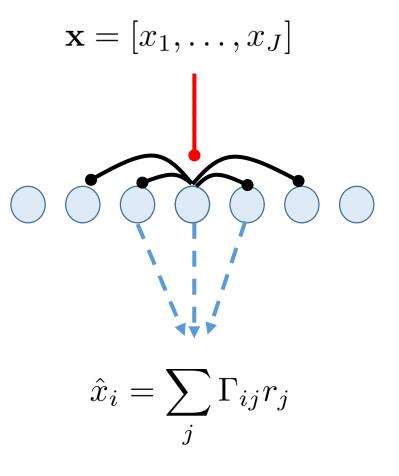
Homogeneous Network



General case

Minimize:

 $E = \|\mathbf{x} - \hat{\mathbf{x}}\|^2 + \operatorname{Cost}(\mathbf{r})$



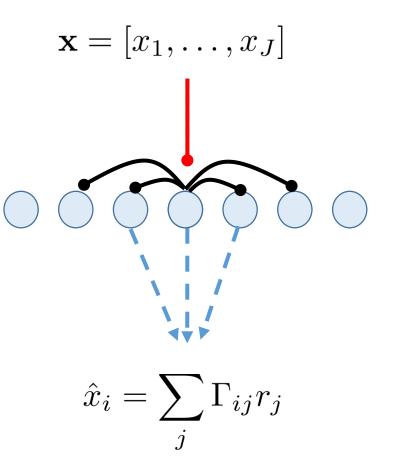
General case

Minimize:

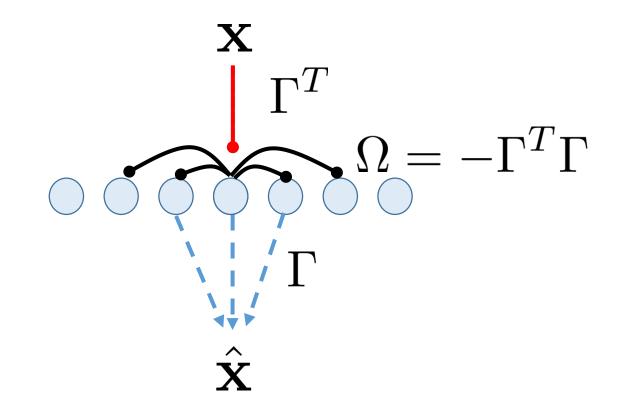
$$E = \|\mathbf{x} - \hat{\mathbf{x}}\|^2 + \operatorname{Cost}(\mathbf{r})$$

Greedy spike rule:

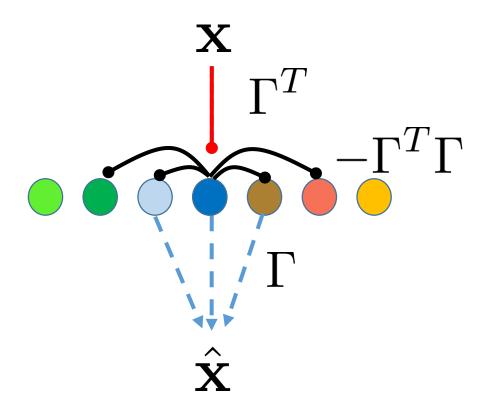
 $E^{\operatorname{spike} j} < E^{\operatorname{no spike} j}$

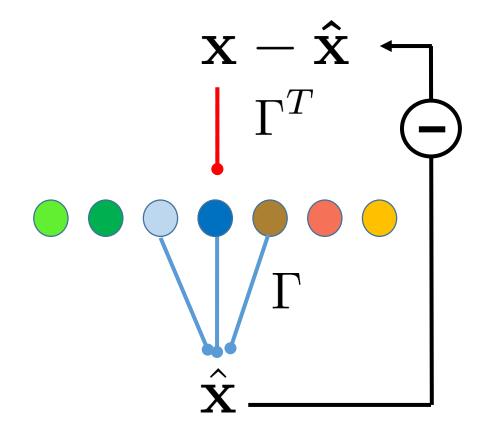


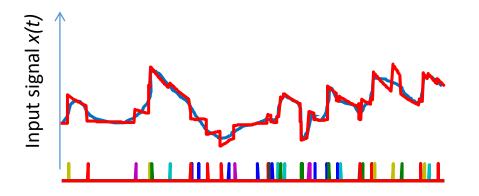
General case: efficient LIF network

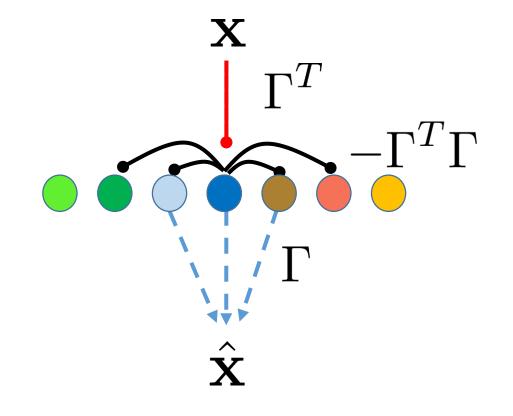


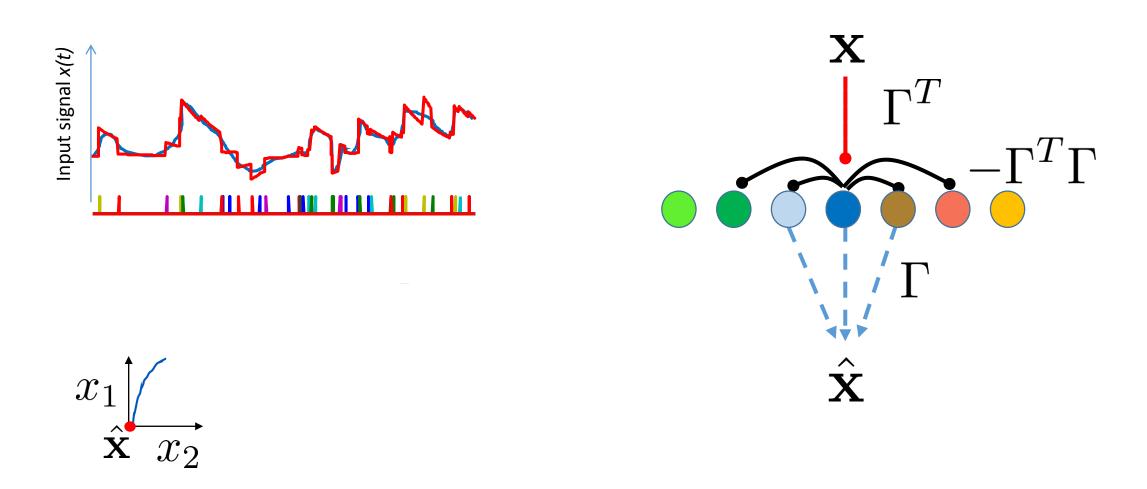
Equivalent to predictive encoder

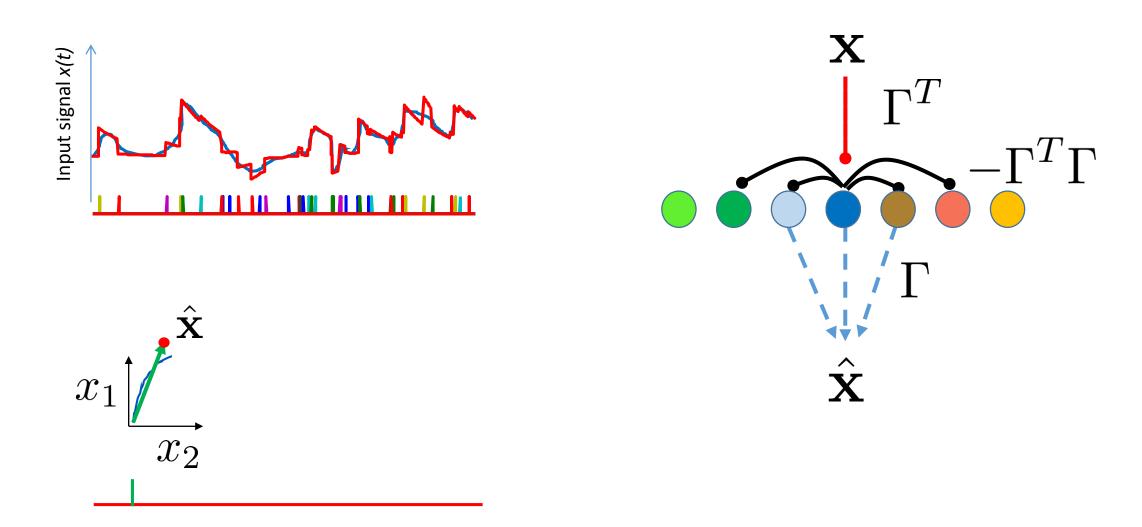


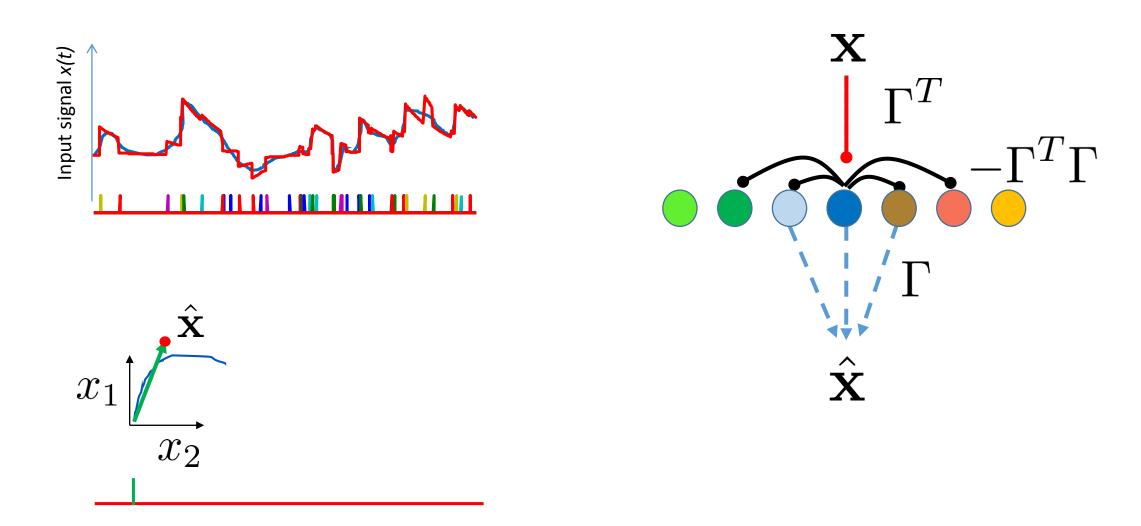


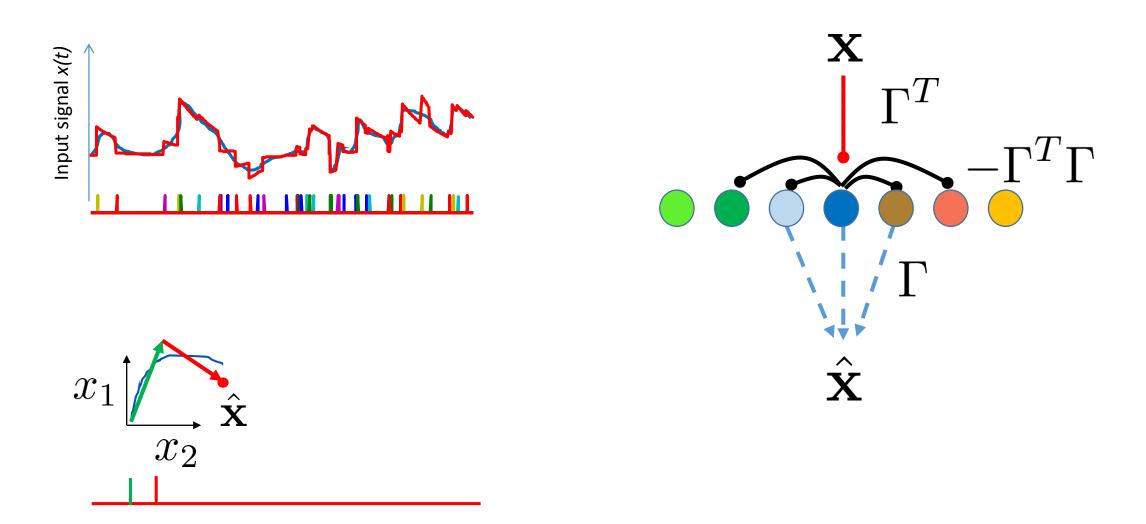


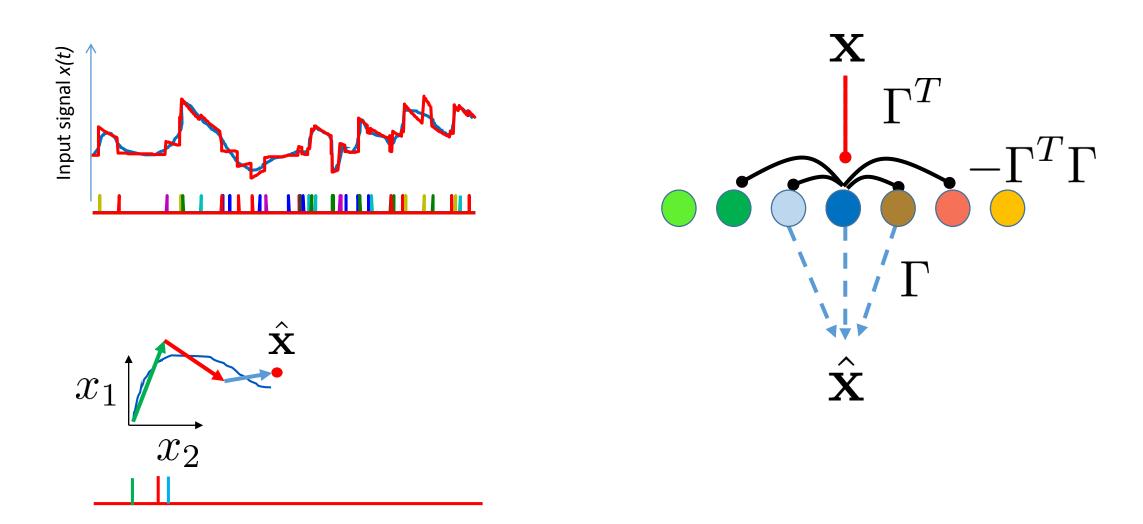


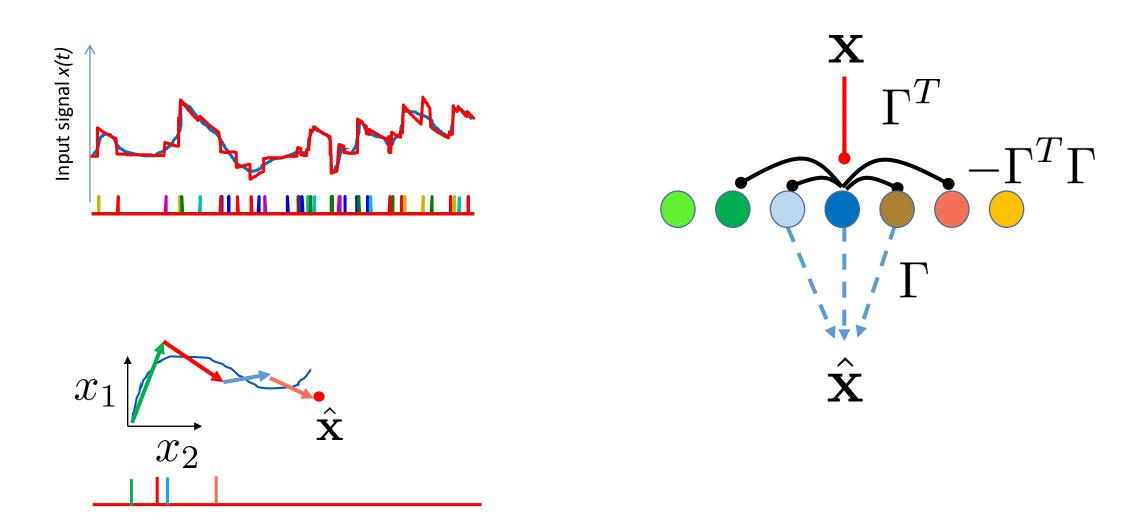


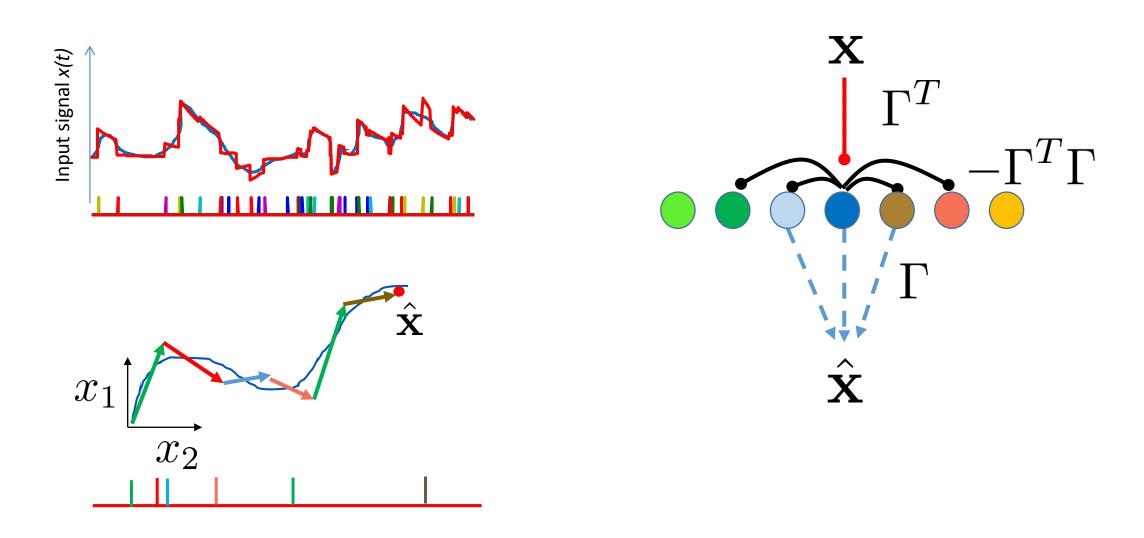




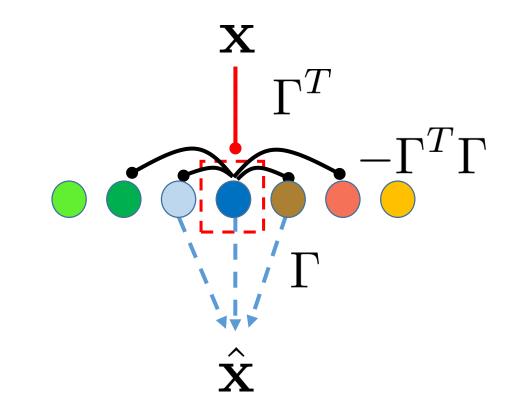


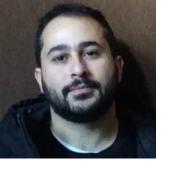


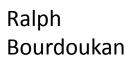


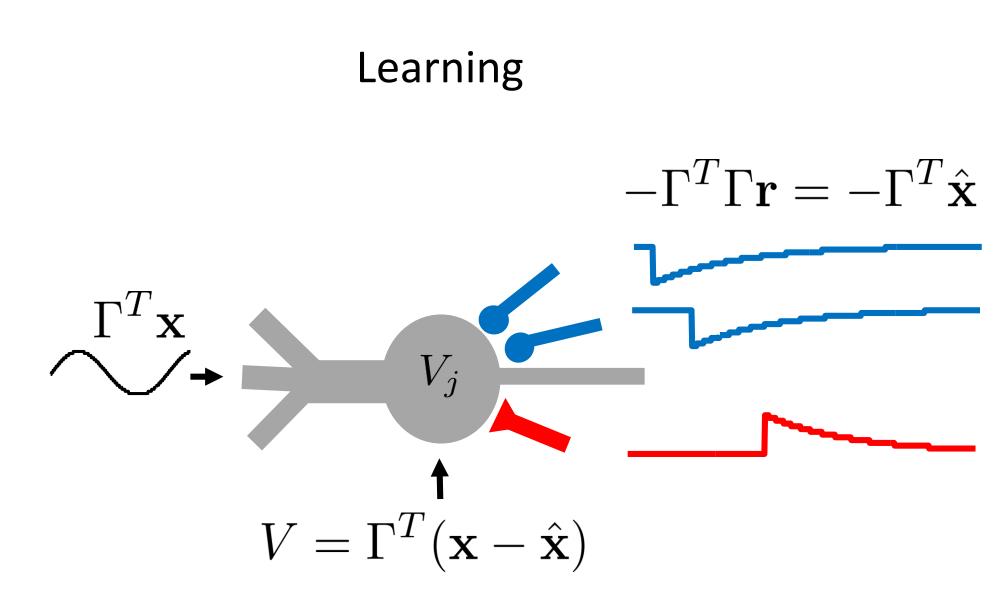


Learning the connections

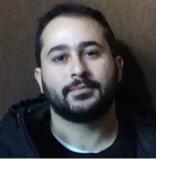




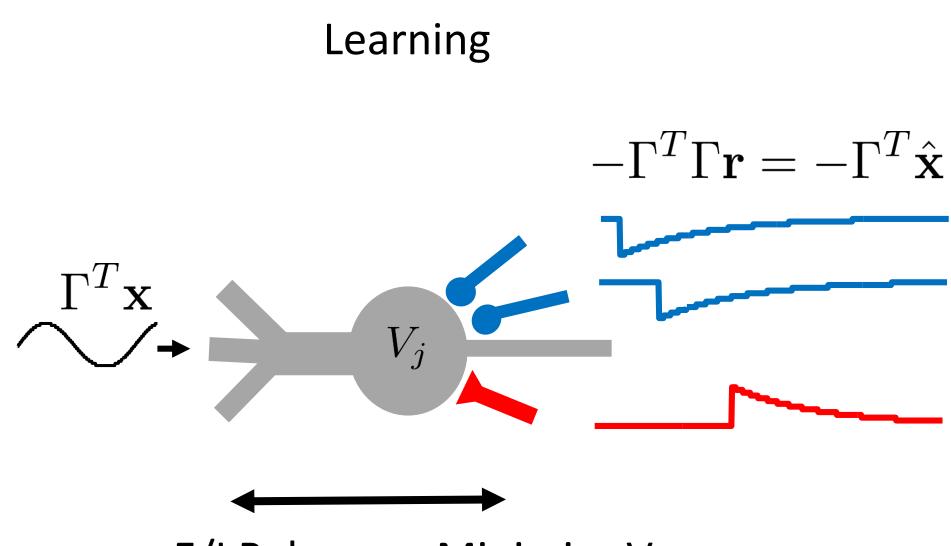




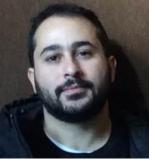
Membrane potential = prediction error



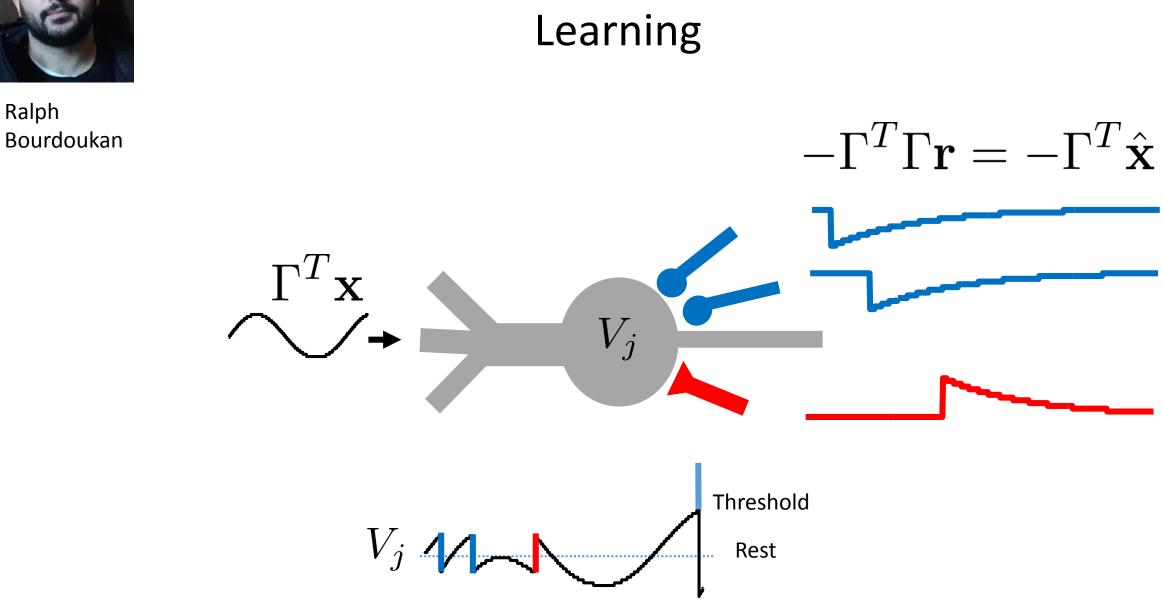
Ralph Bourdoukan

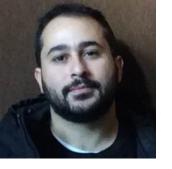


E/I Balance = Minimize V

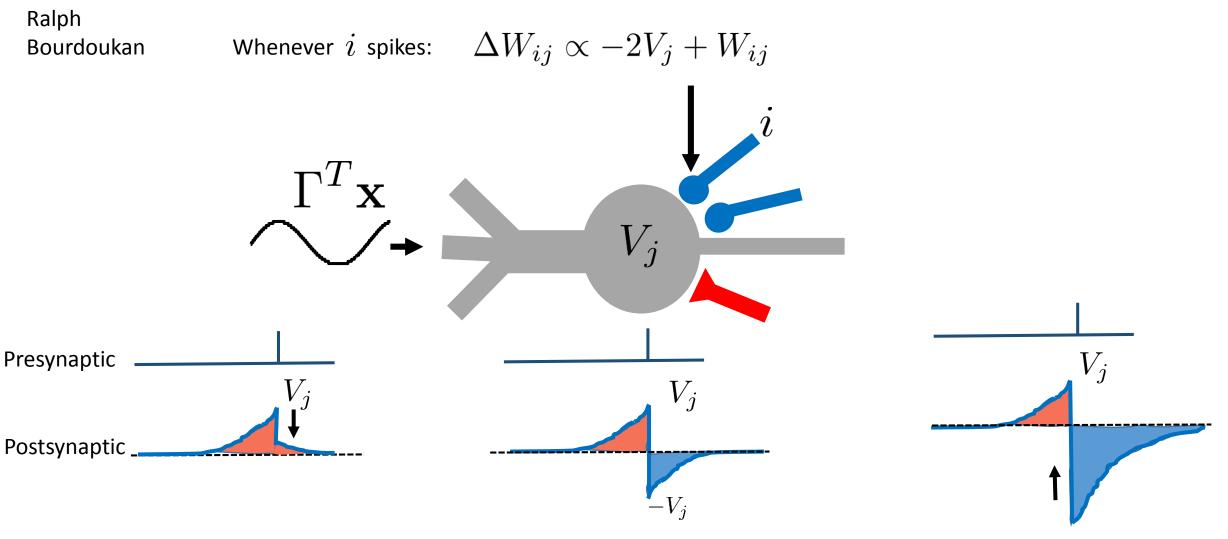


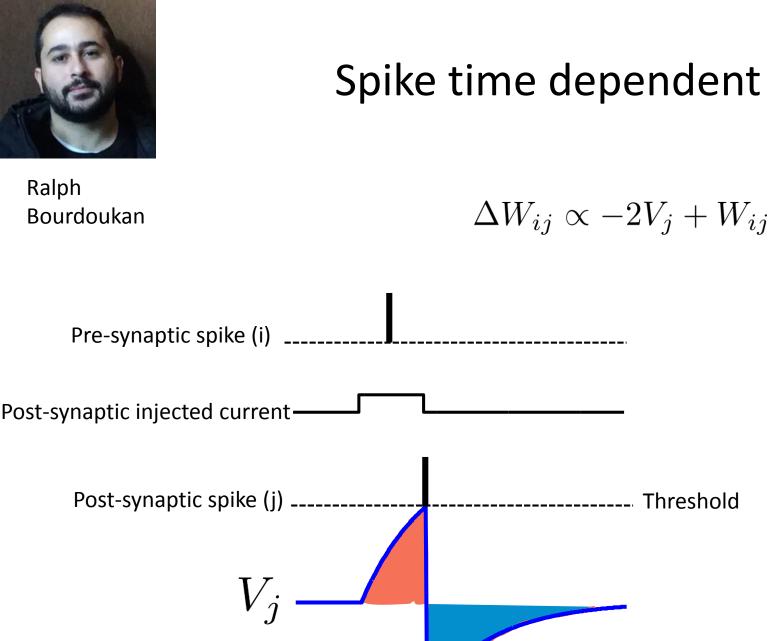
Ralph



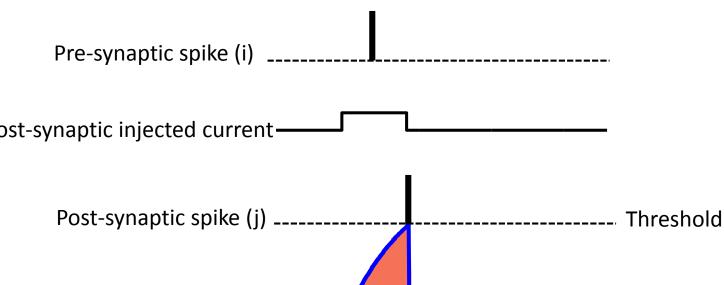


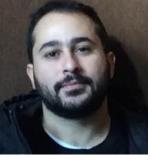
Learning the recurrent connections



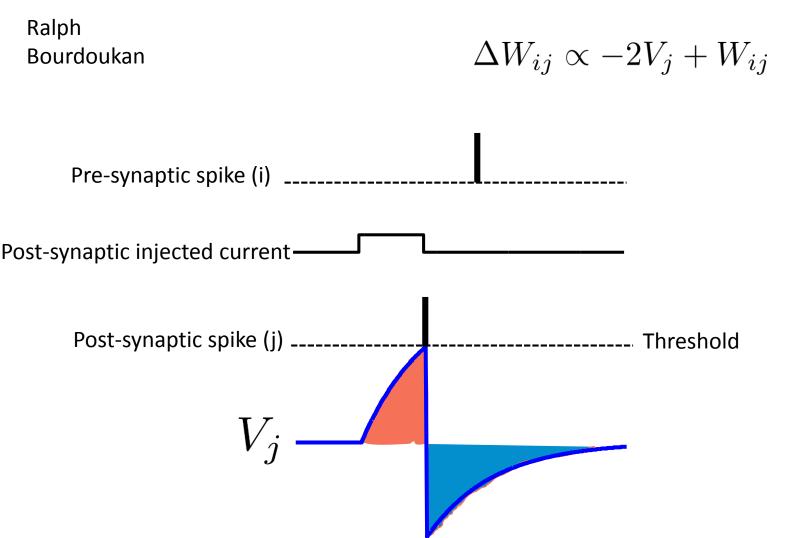


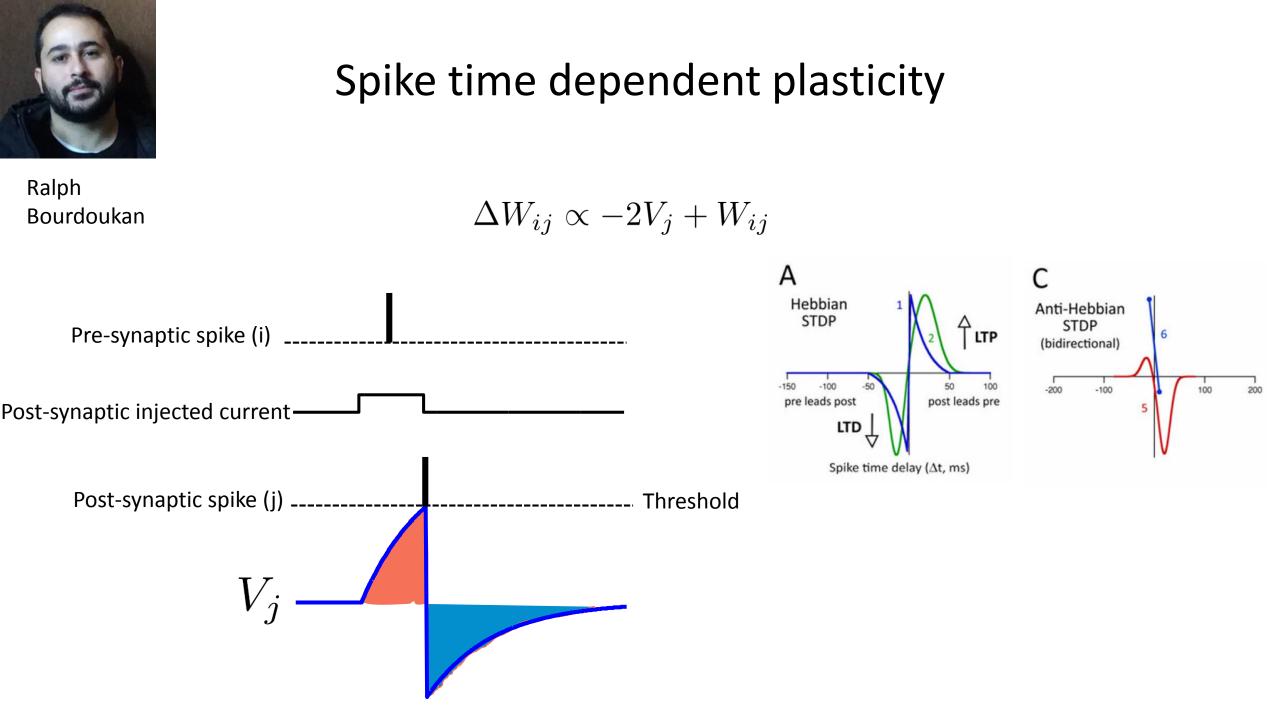
Spike time dependent plasticity





Spike time dependent plasticity





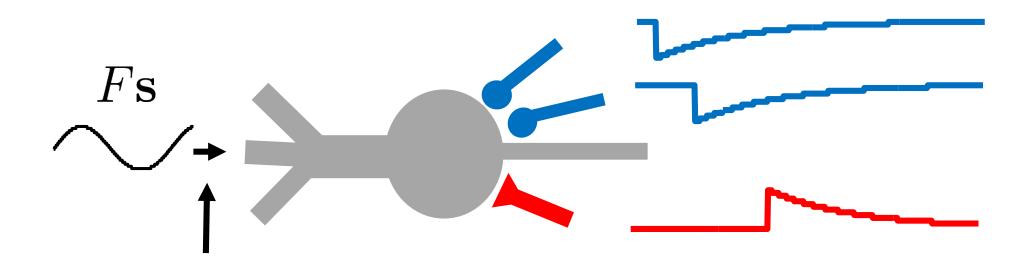
Learning the optimal weights

$$(\mathbf{r}, \Gamma) = \operatorname*{arg\,min}_{\mathbf{r}, \Gamma} \left(\|\mathbf{x} - \hat{\mathbf{x}}\|^2 + \operatorname{Cost}(\mathbf{r}) \right)$$

Wieland Brendel

Pietro Vertechi

Learning the feedforward connections



Wieland Brendel

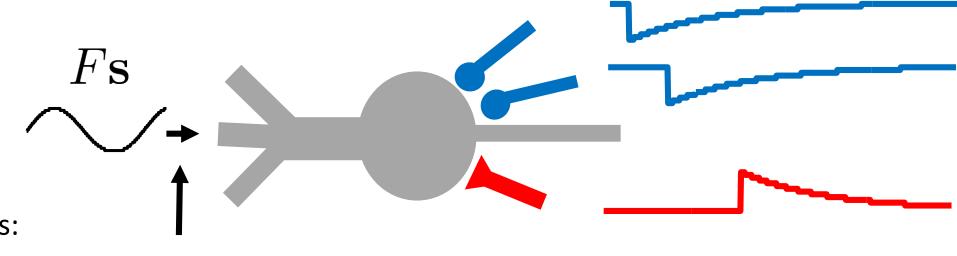
Learning the feedforward connections

For uncorrelated inputs

Pietro Vertechi

When j spikes:

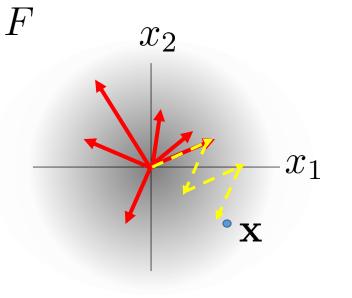
 $\Delta F_{kj} \propto \tilde{x}_k - F_{kj}$



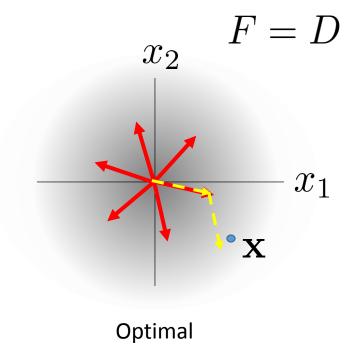
Wieland Brendel

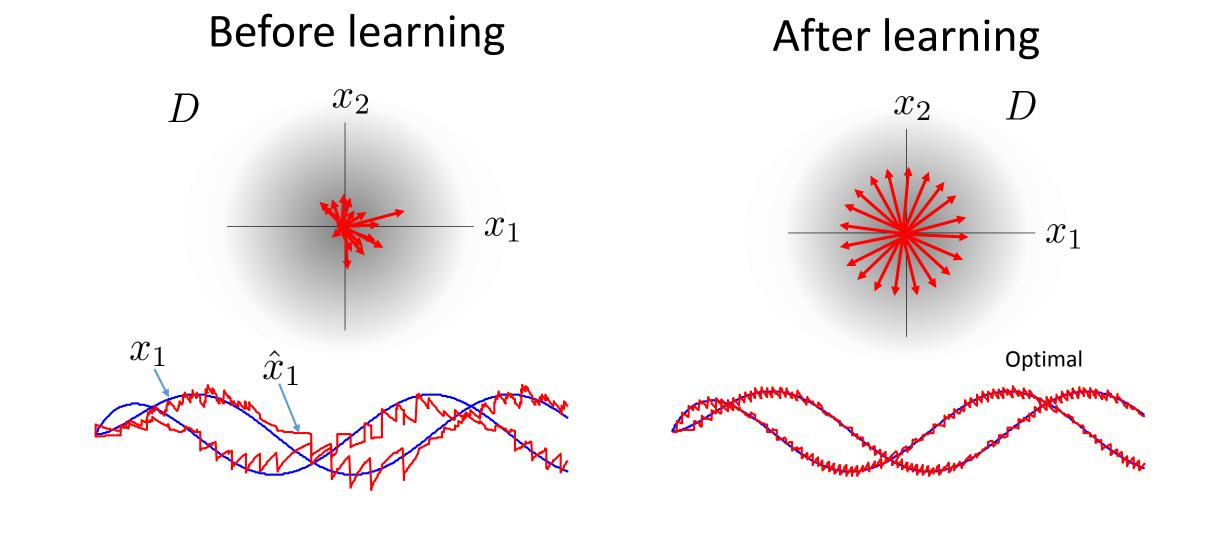
Pietro Vertechi

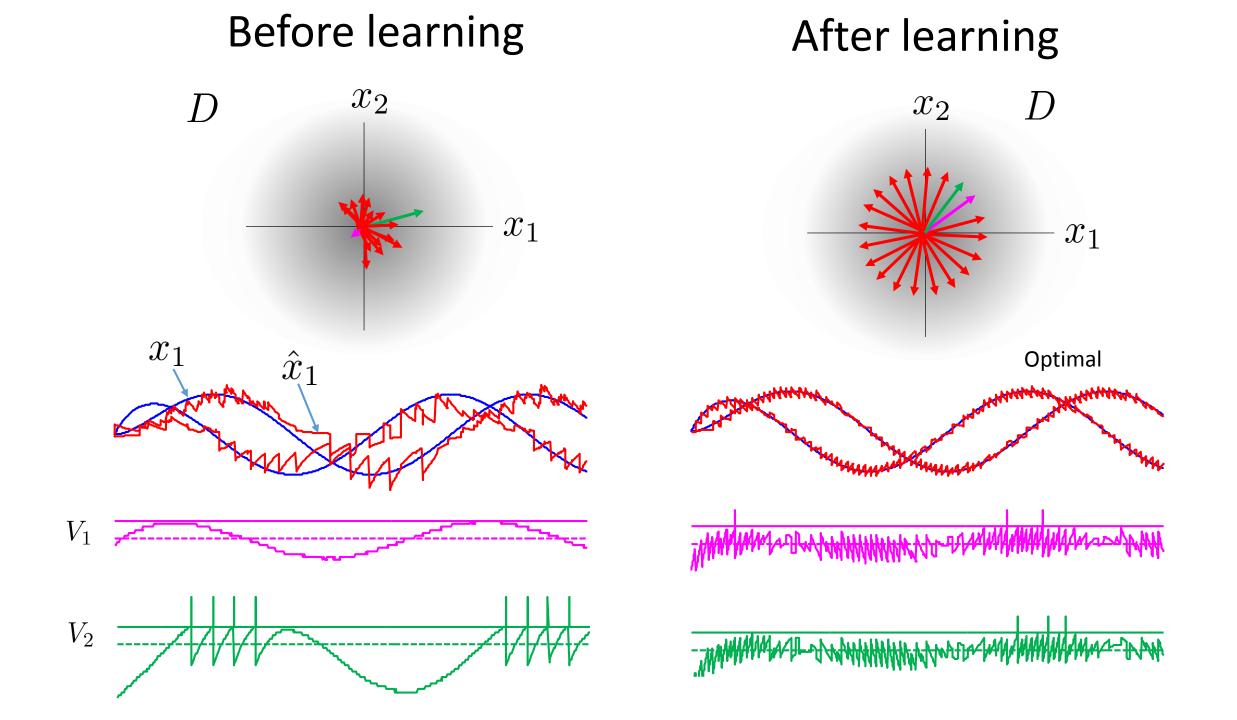
Learning the feedforward connections

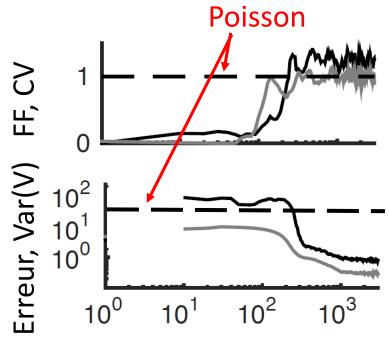


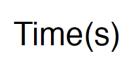
Sub-optimal

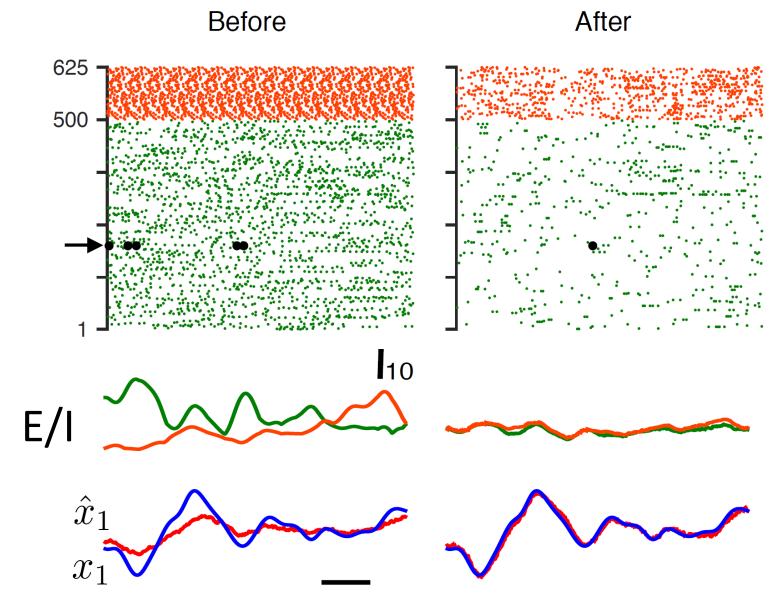








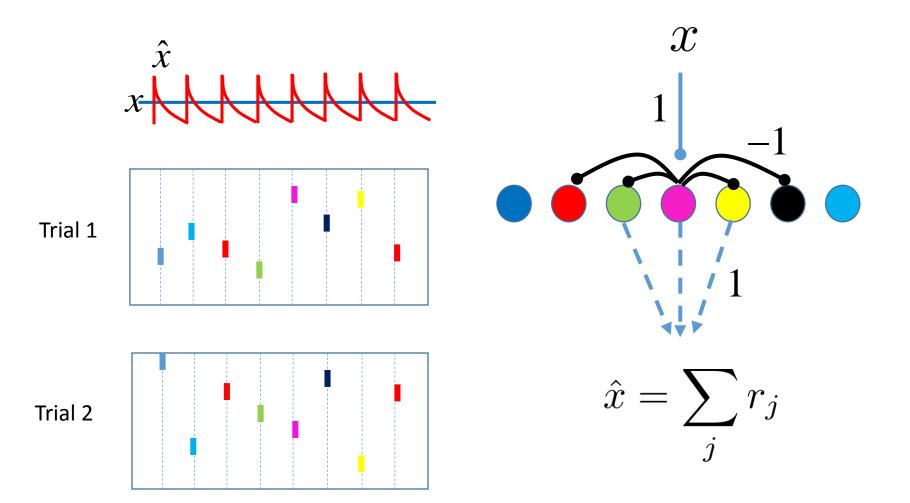




²⁰⁰ ms

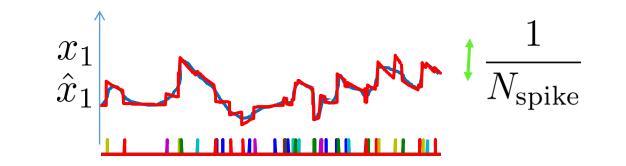
Implications

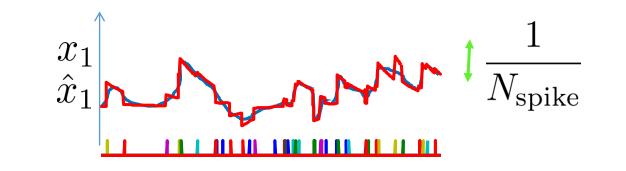
- Learning E/I balance = learning maximally efficient neural coding.
- From input statistics, model-free predictions for plasticity, firing statistics and tuning properties of spiking network.

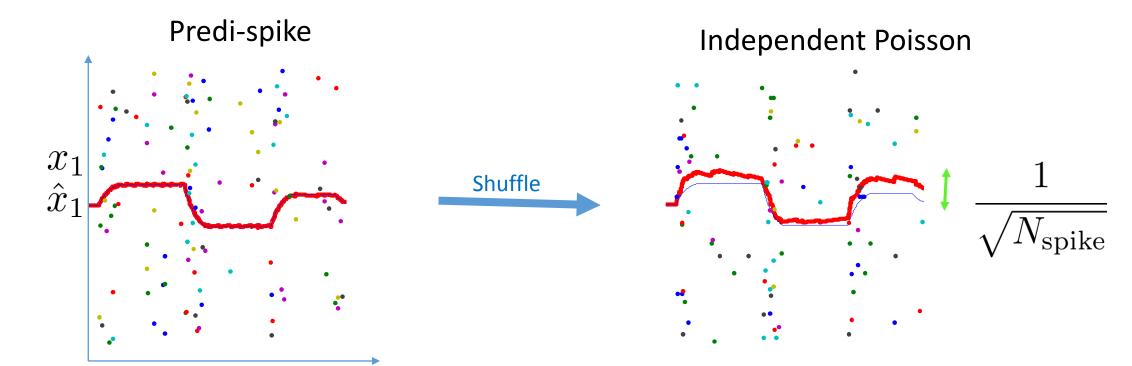


Martin

Boerlin







Time

E/I balance = enforcing an efficient neural code.

Neural variability = degeneracy, not noise. Degeneracy = robustness, not redundancy. Single spikes are **RELEVANT**.

Cortical networks might be much more precise than previously thought.

Tuning curves = network solution

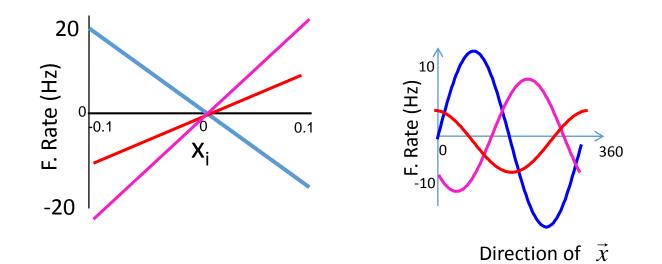
$$\mathbf{r} = \underset{\mathbf{r}^* > \mathbf{0}}{\operatorname{arg\,min}} \left(\|\mathbf{x} - \Gamma \mathbf{r}^*\|^2 + \operatorname{Cost}(\mathbf{r}) \right)$$

Activity of one neuron depends on all other neurons

Tuning curves = network solution

$$\mathbf{r} = \underset{\mathbf{r}^* > \mathbf{0}}{\operatorname{arg\,min}} \left(\|\mathbf{x} - \Gamma \mathbf{r}^*\|^2 + \operatorname{Cost}(\mathbf{r}) \right)$$

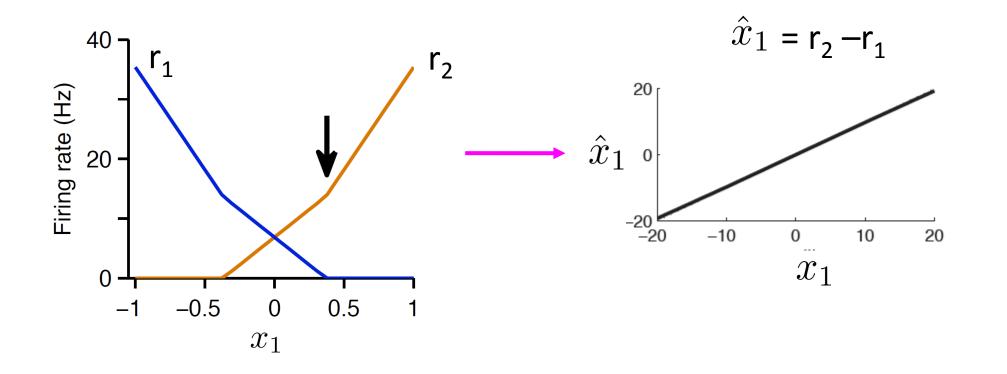
If firing rate could be negative...



Tuning curves = network solution

$$\mathbf{r} = \underset{\mathbf{r}^* > \mathbf{0}}{\operatorname{arg\,min}} \left(\|\mathbf{x} - \Gamma \mathbf{r}^*\|^2 + \operatorname{Cost}(\mathbf{r}) \right)$$

But firing rates can't be negative ...

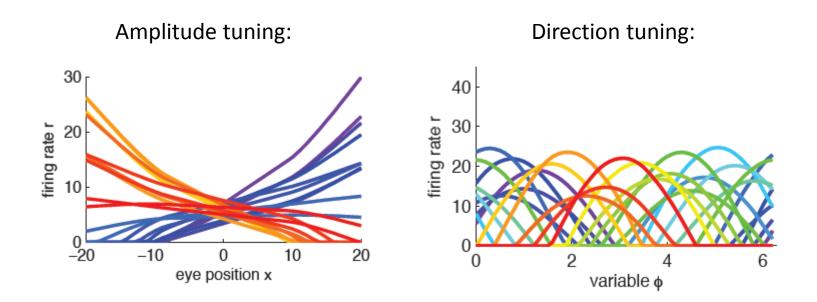


Tuning curves = network solution

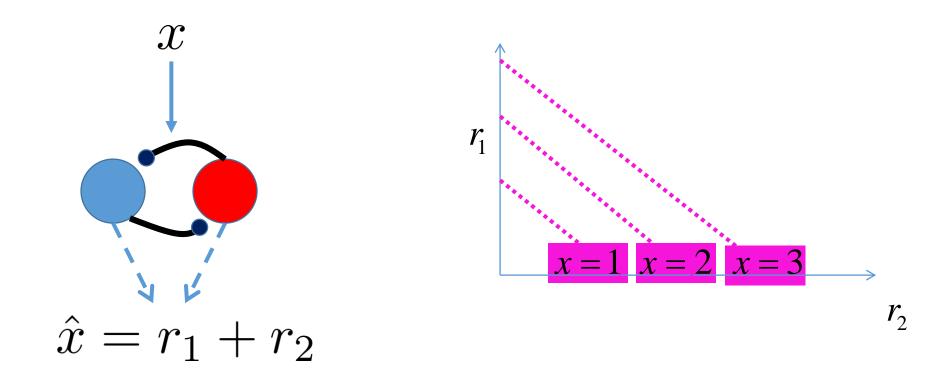
$$\mathbf{r} = \underset{\mathbf{r}^* > \mathbf{0}}{\operatorname{arg\,min}} \left(\|\mathbf{x} - \Gamma \mathbf{r}^*\|^2 + \operatorname{Cost}(\mathbf{r}) \right)$$

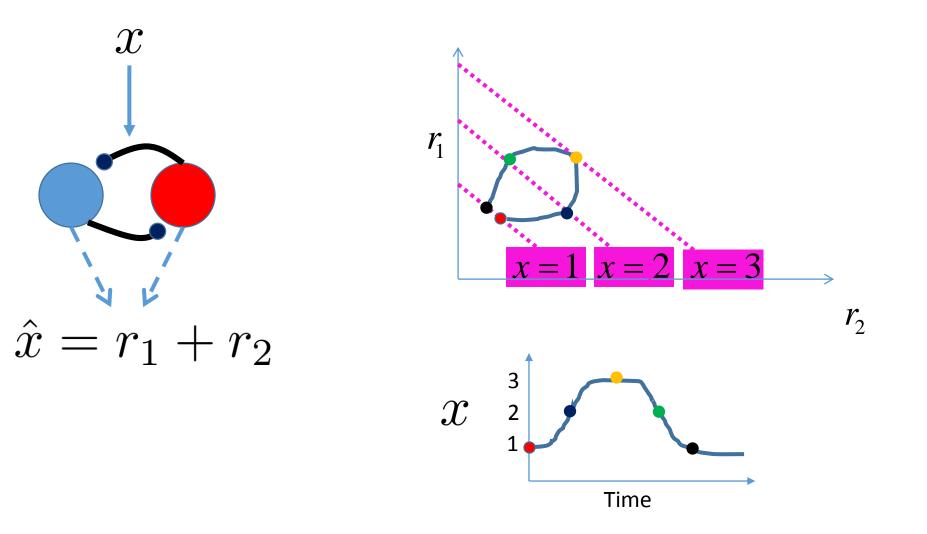
${\mathcal X}$ $\hat{x} = \sum_{i} \Gamma_{j} r_{j}$

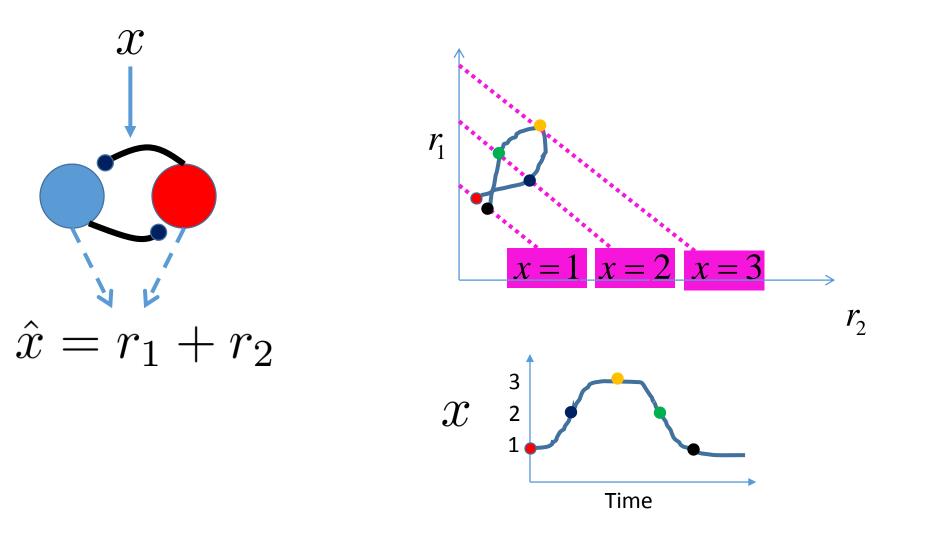
Non linear, heterogeneous tuning curves

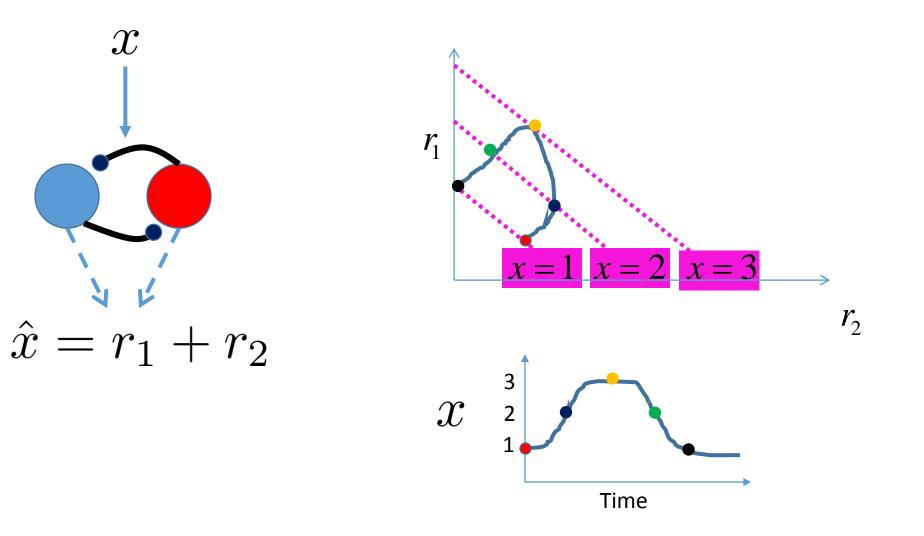


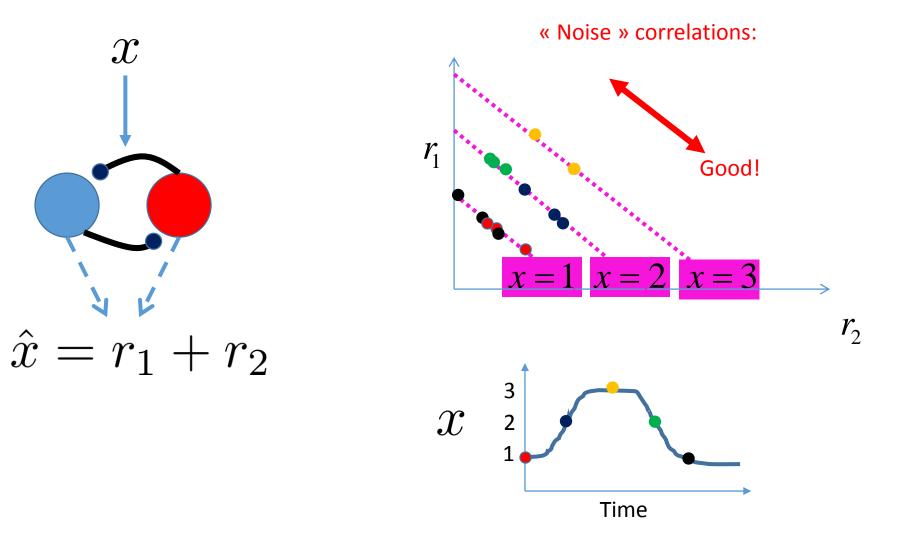
Tuning curves = network solution



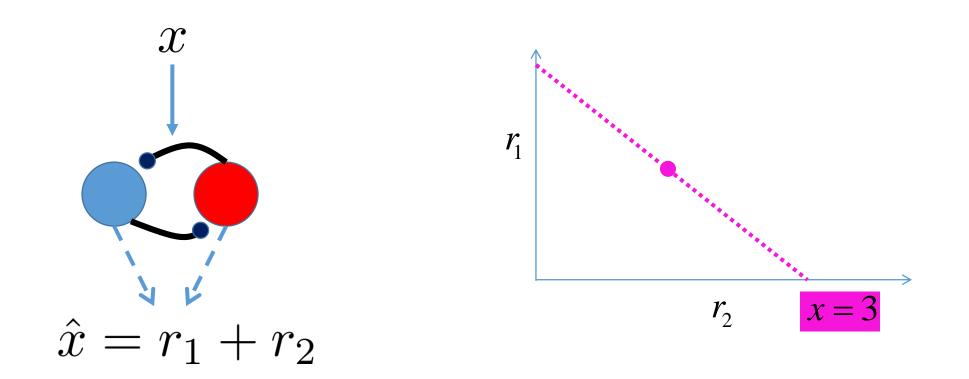




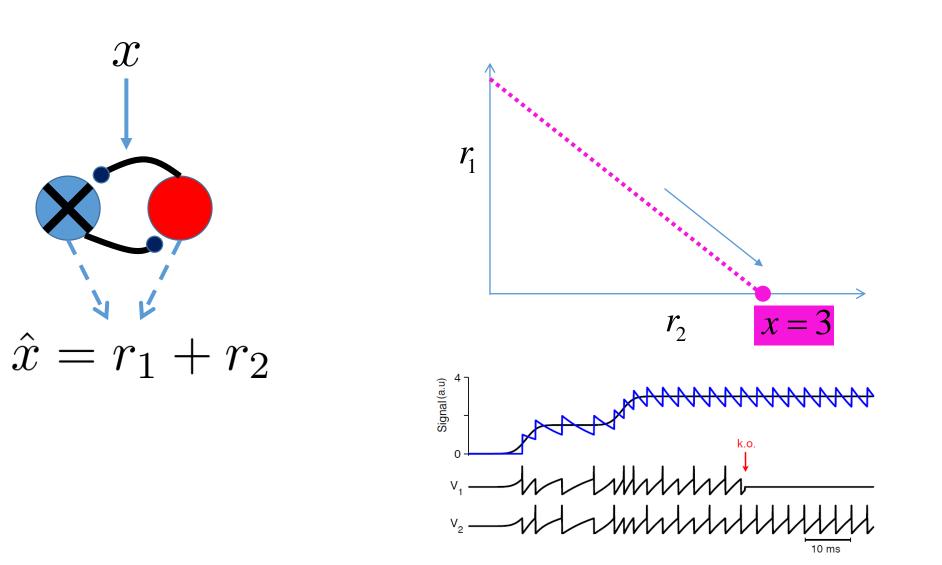




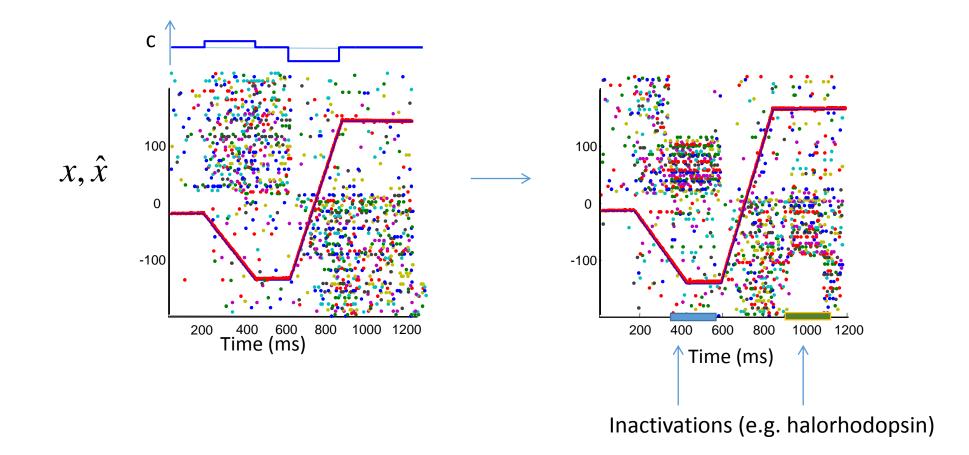
Tuning curves = network solution



Tuning curves = network solution

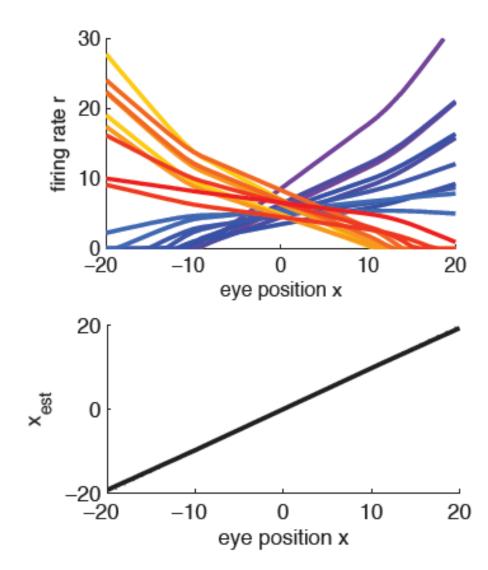


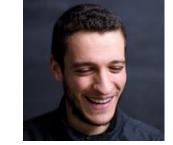
The network is extremely robust



Robust to neural death, connection noise, background noise, synaptic failure...

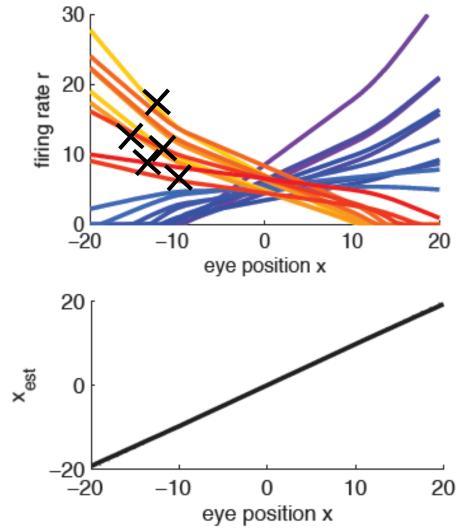
ett Nuno Calaim





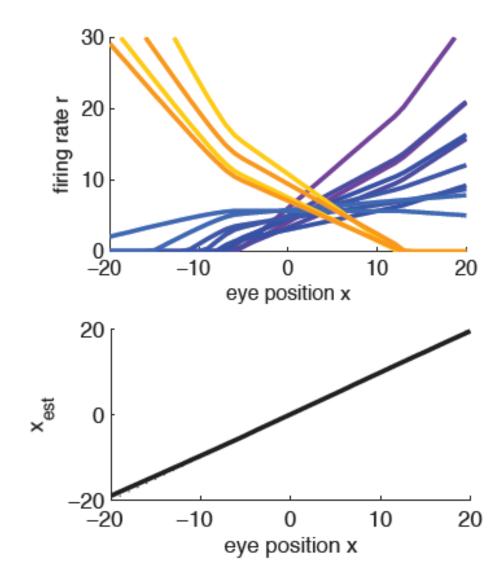
rett Nuno Calaim

Ablate those neurons

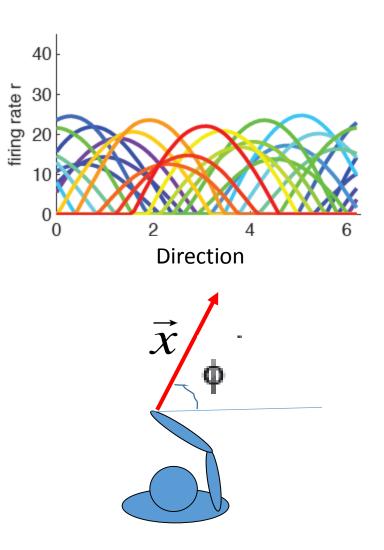


Nuno Calaim

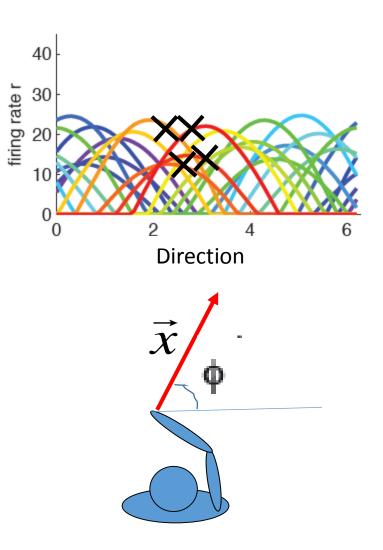
David Barrett



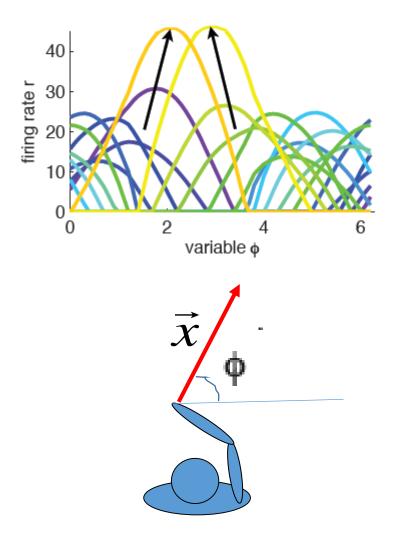
Direction tuning



Direction tuning

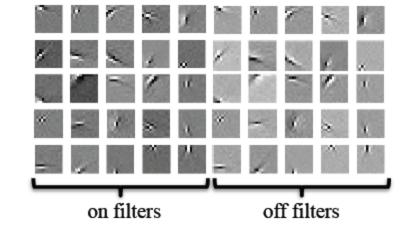


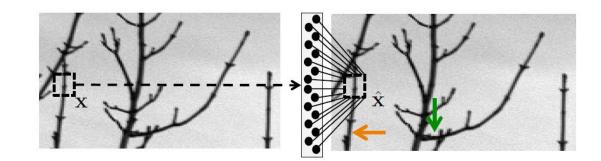
Direction tuning



David Barrett

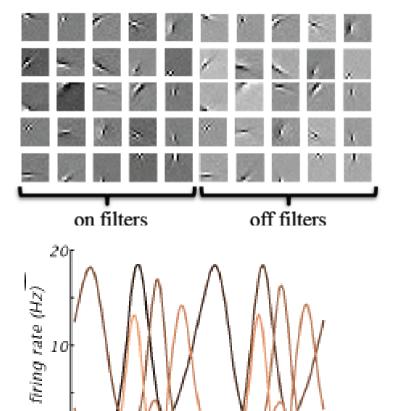
Visual orientation tuning





David Barrett

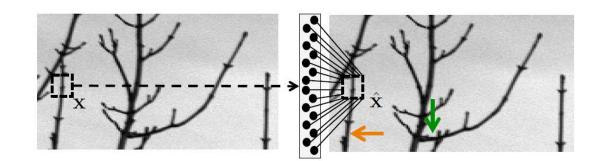
Visual orientation tuning



 $\frac{\partial}{\partial}$

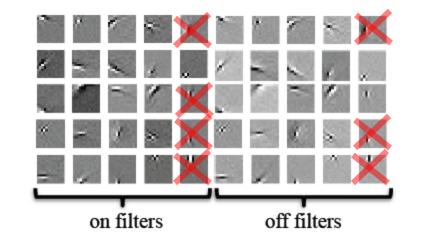
pi

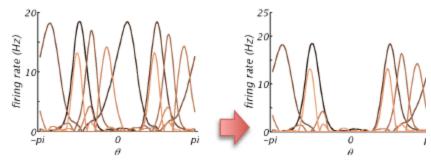
0¹⁶⁴ -рі

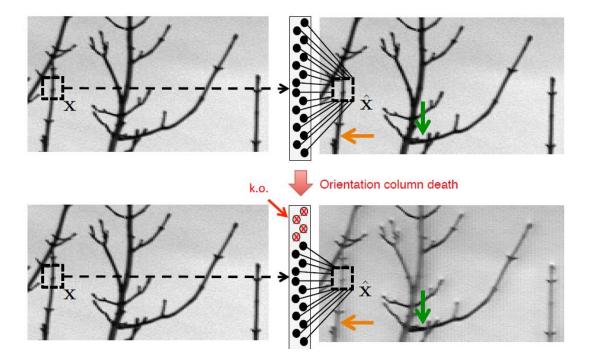


David Barrett

Visual orientation tuning







David Barrett

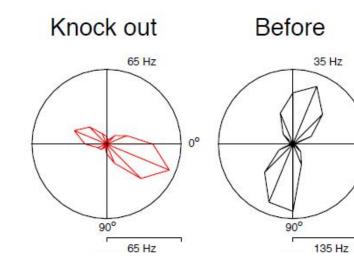
Visual orientation tuning

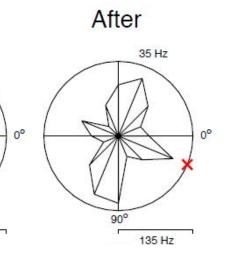


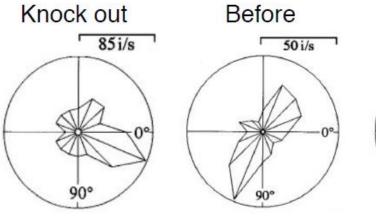
Visual orientation tuning

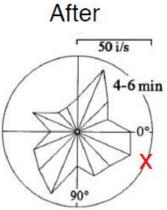
Model

Data (Crook and Eysel, 1992)



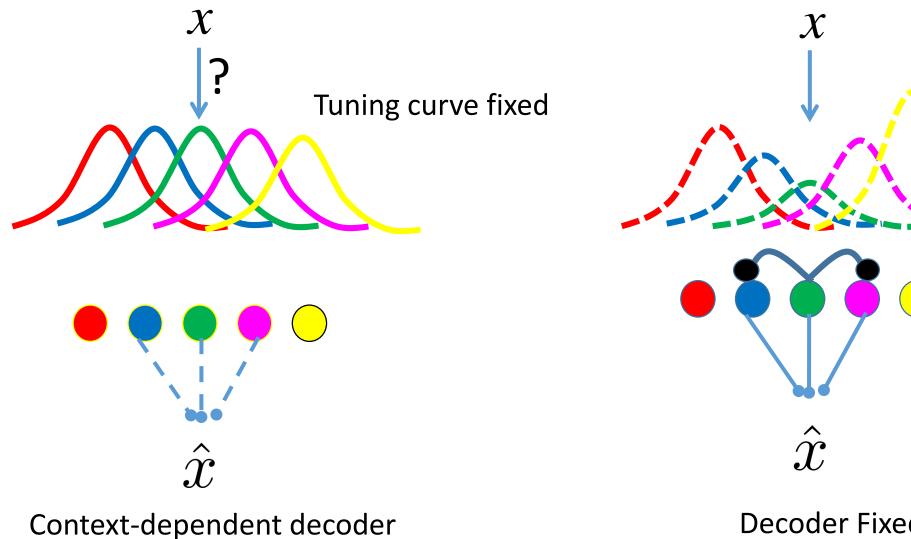






Population coding

Efficient population coding



Context-dependent tuning

Decoder Fixed

Neural responses = network-level solutions

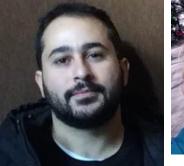
- Tuning curves are highly context dependent.
- E/I balance = maximal robustness.
- Albeit encoding is complex, decoding is simple. Larger networks may be easier to characterize than single cells.

Wieland Brendel

Gabrielle Gutierrez

Matty Chalk

Christian Machens



Bourdoukan

Ralph

Fleur Zeldenrust

David Barrett

Veronika Koren

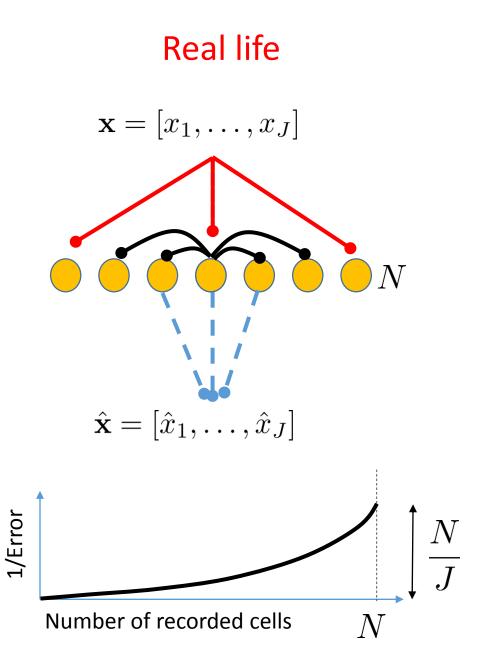
Martin Boerlin

Thanks for your attention!

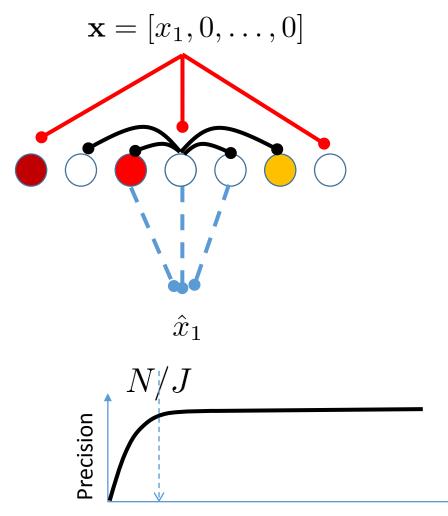
Pietro Vertechi

Erwan Ledoux

Why so many neurons?

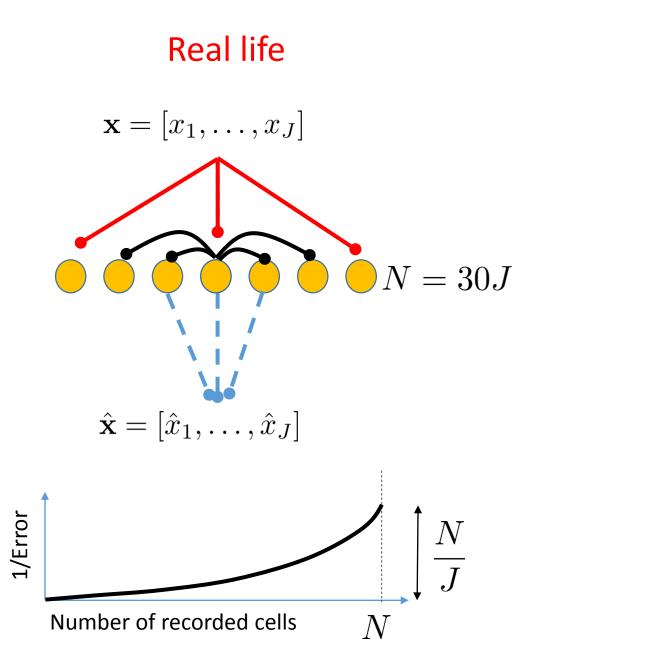


Simple, low D stimuli

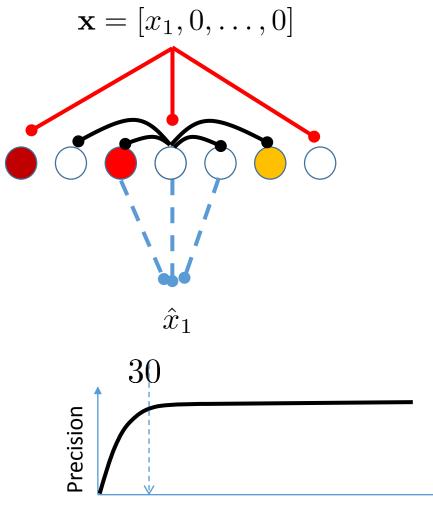


Number of recorded cells

Level of degeneracy?



Simple, low D stimuli



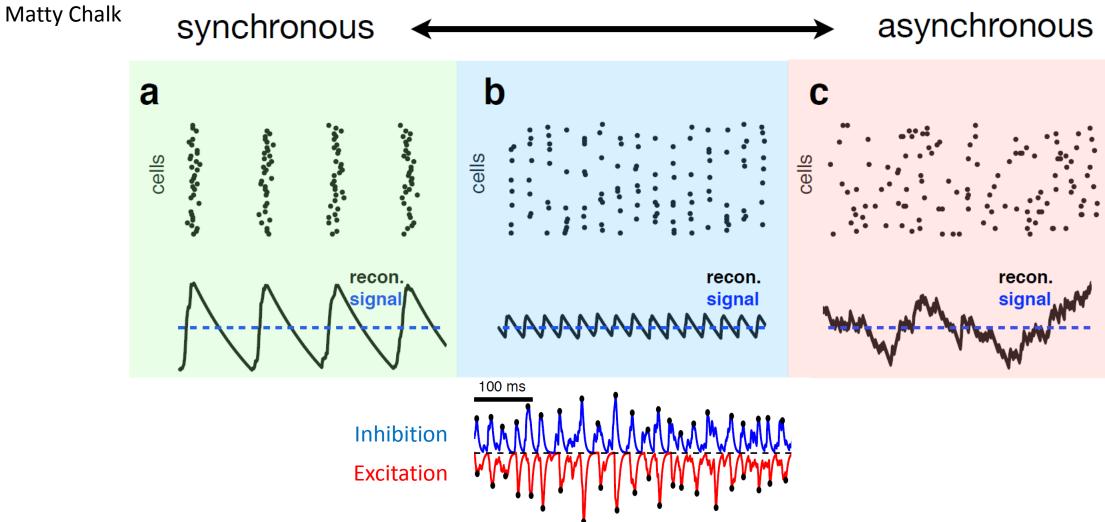
Number of recorded cells

Matty Chalk

What if there are synaptic delays?

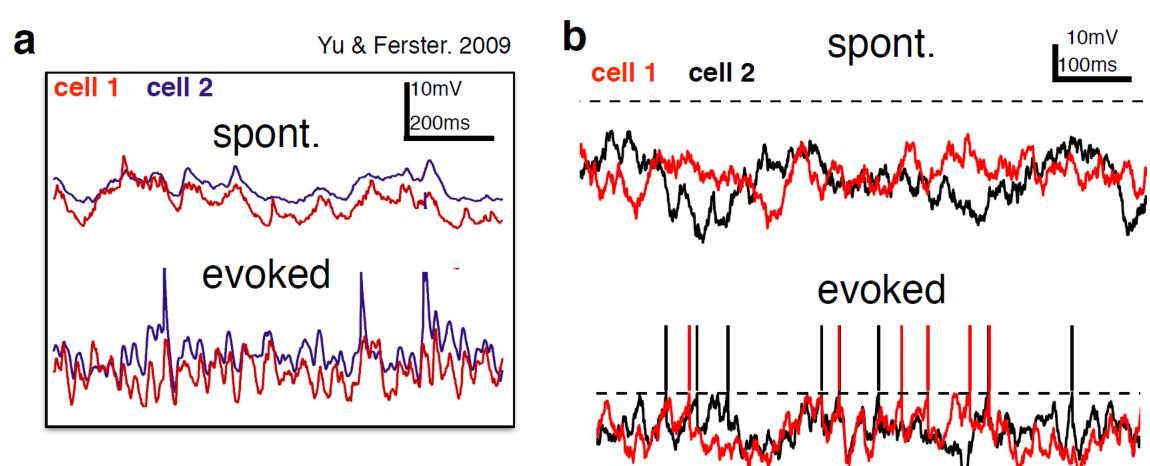


Oscillations and predictive coding



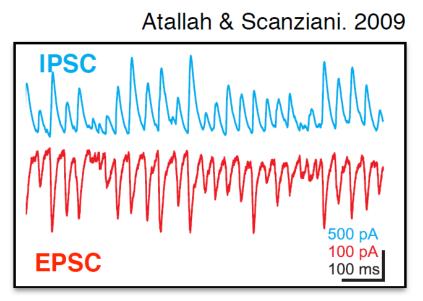
Correlated oscillations in membrane potential

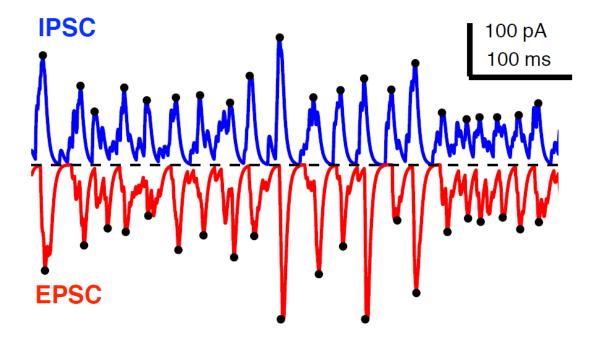
Matty Chalk

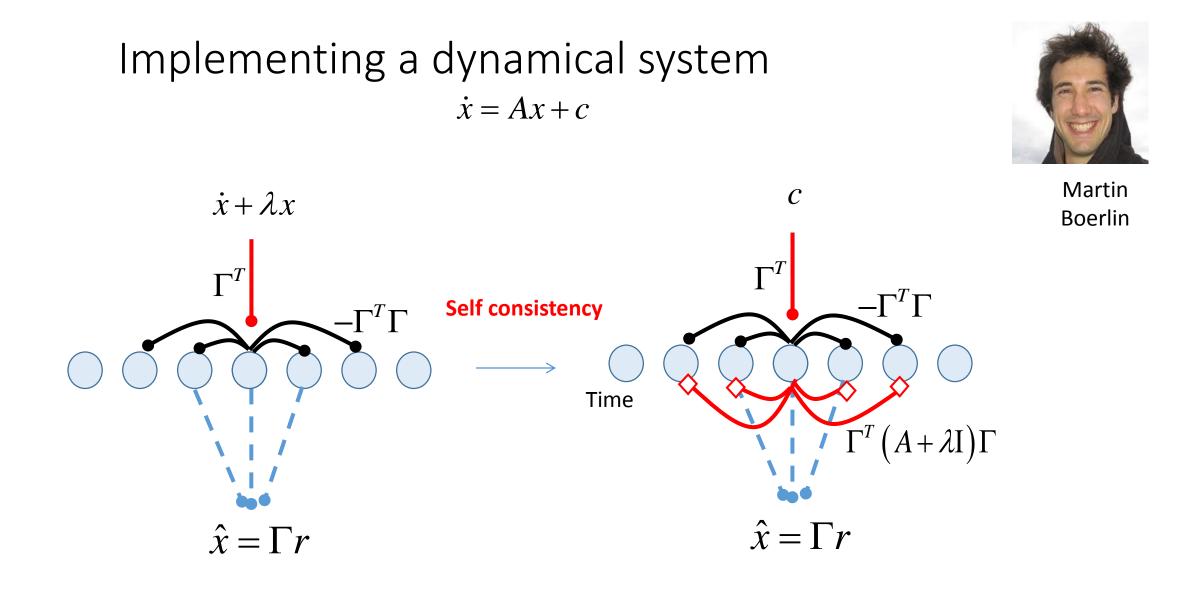


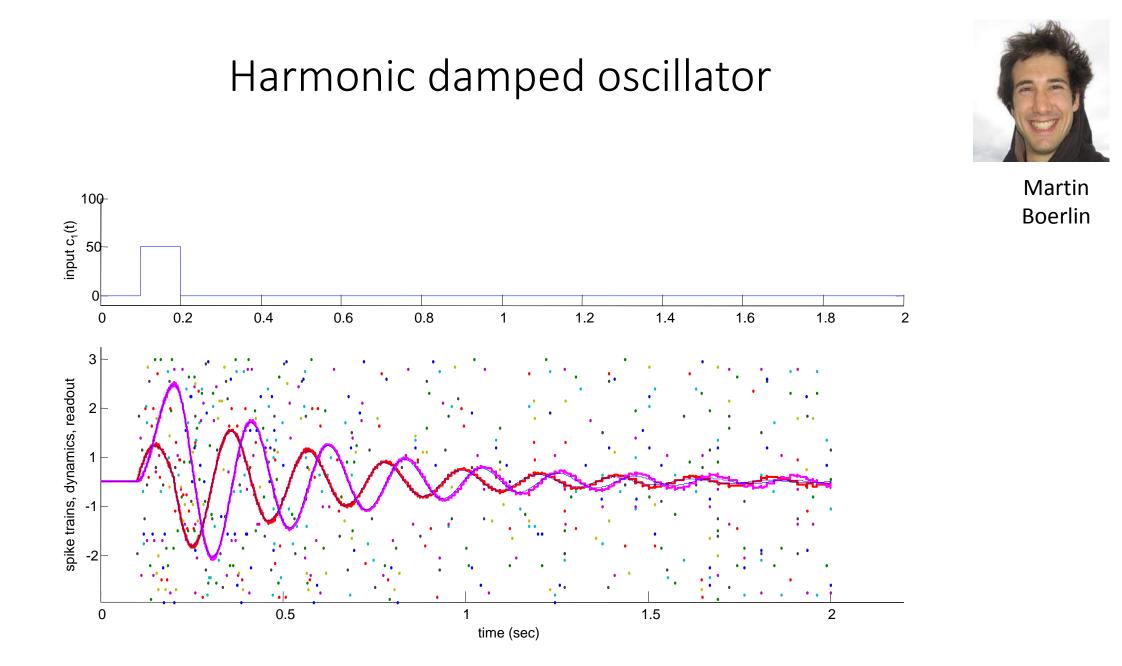
Synchroneous oscillations in excitation and inhibition

Matty Chalk

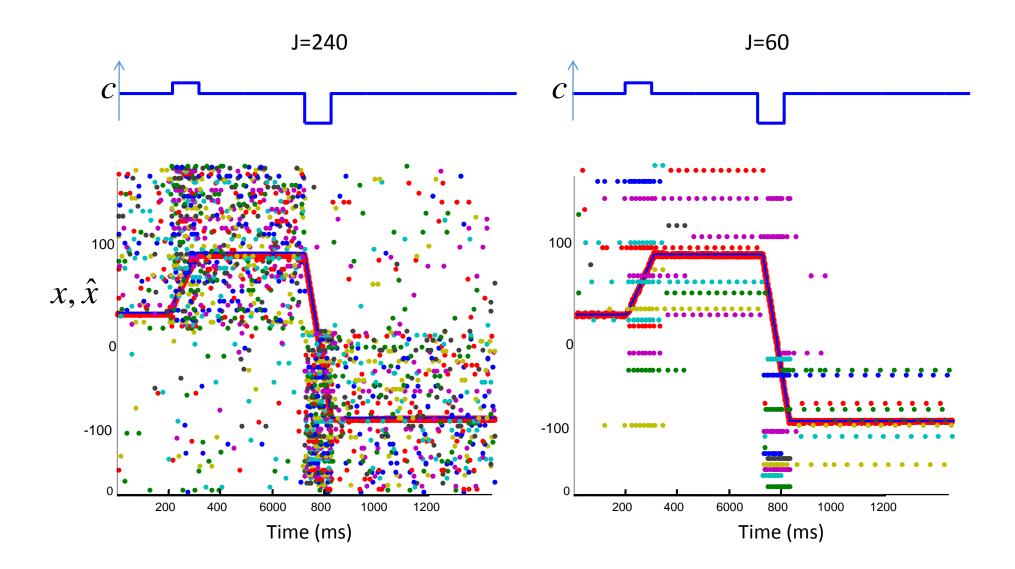








Effect of network size

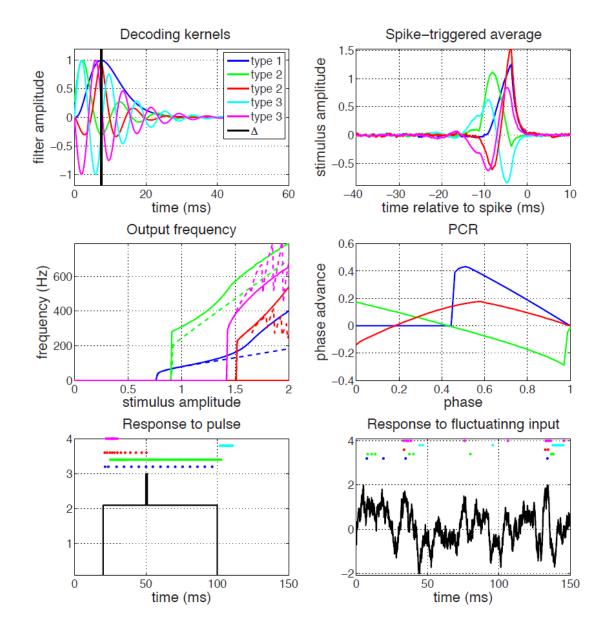


Extension to temporal kernels: functional GLMs

Output filter Fleur Zeldenrust Input filter Threshold Output spike train Representing filter Lateral filter Estimate Lateral filter Input filter Threshold Output spike train Representing filter Output filter

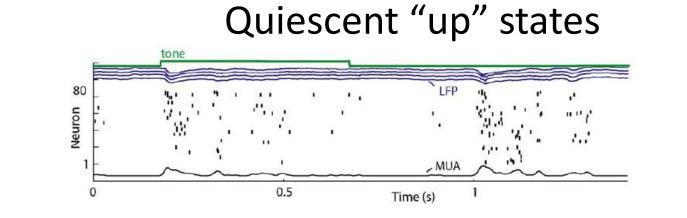
Fleur Zeldenrust

Type I and Type II cells = different filter types



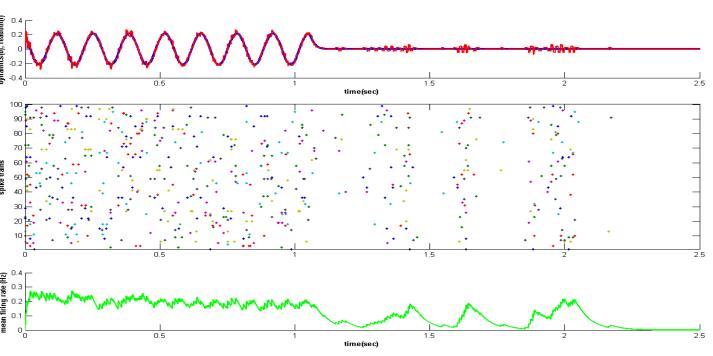
Veronika Koren

Linear cost (threshold): Dompting the noise

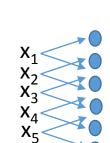


Luczak, Bartho, Harris, Neuron, 2009

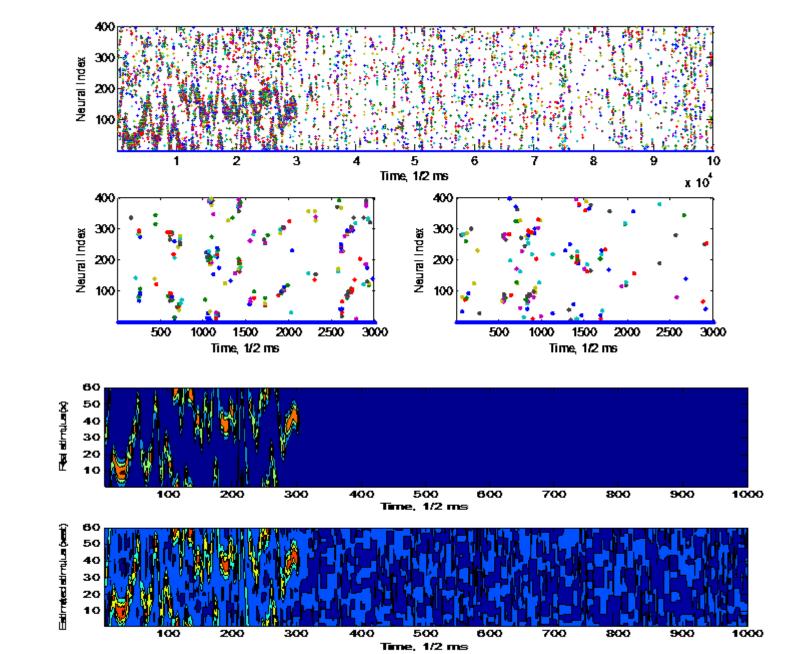
In the model:



Veronika Koren

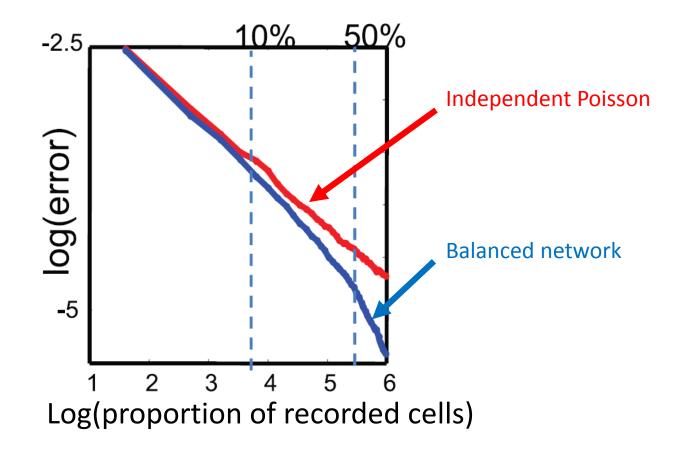


With synaptic delays, topology

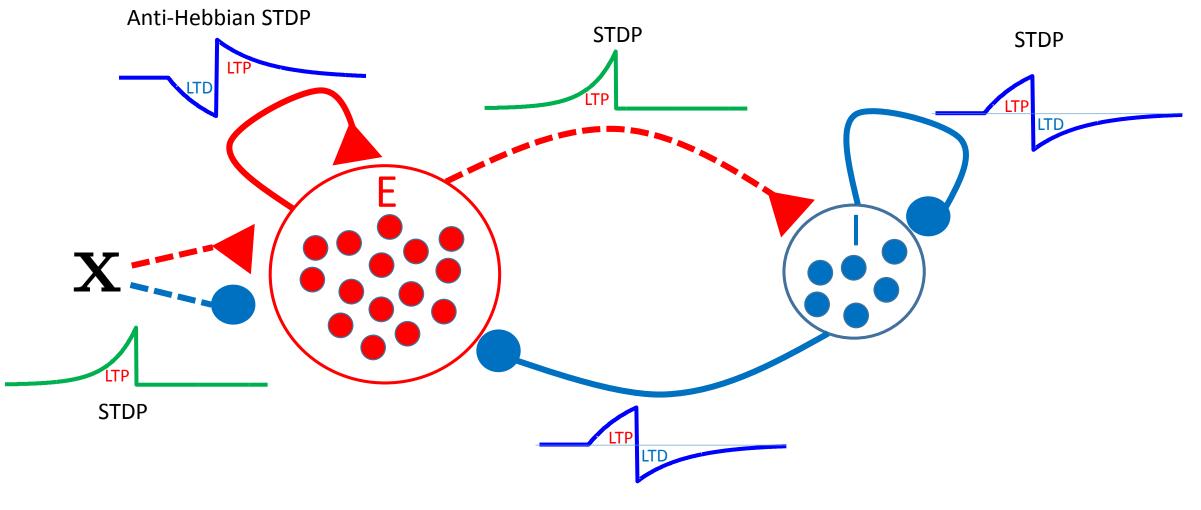


Neural variability = Degeneracy, not noise

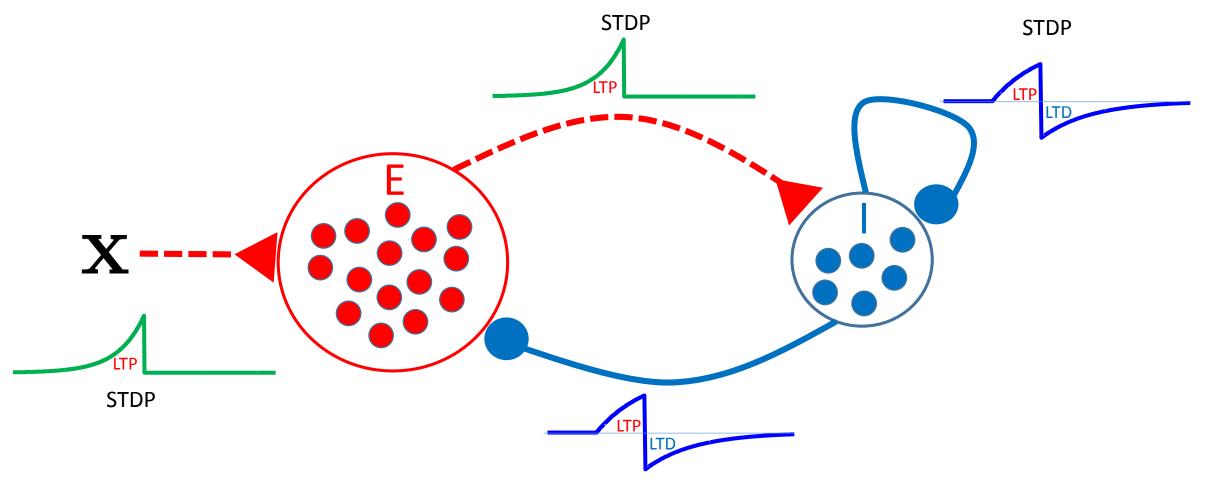
Martin Boerlin

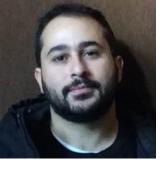


Respecting Dale's Law



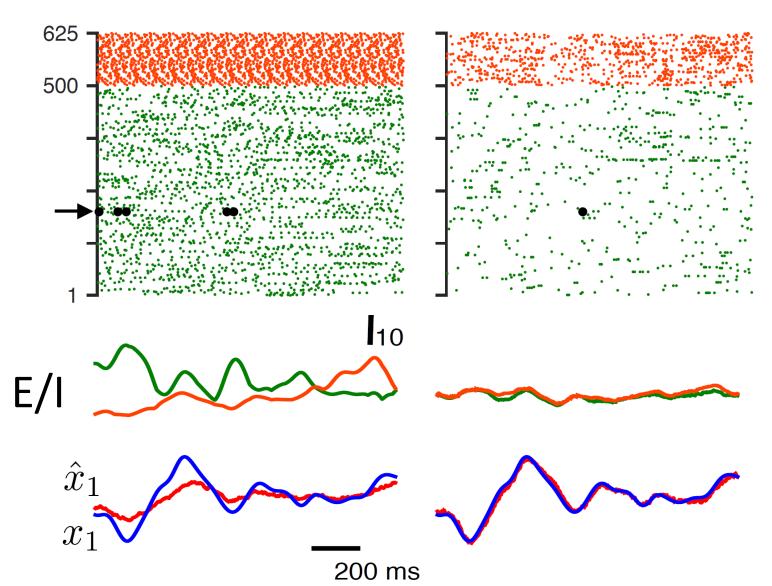
Purely excitatory feedforward inputs





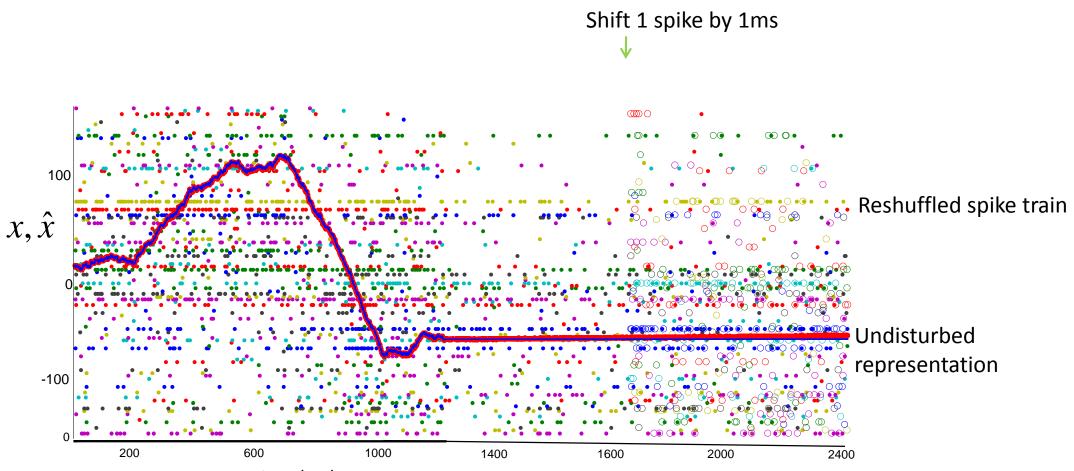
Ralph Bourdoukan

Before



Neural variability = Degeneracy, not noise

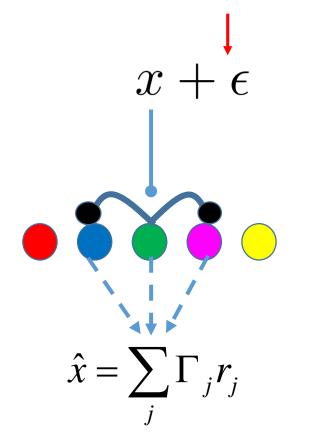
Martin Boerlin

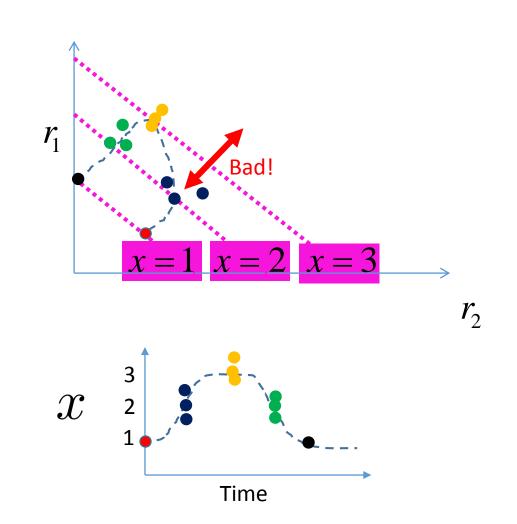


Time (ms)

Neural variability = Degeneracy, not noise

Uncontrolled variables





Adaptation as cost optimization

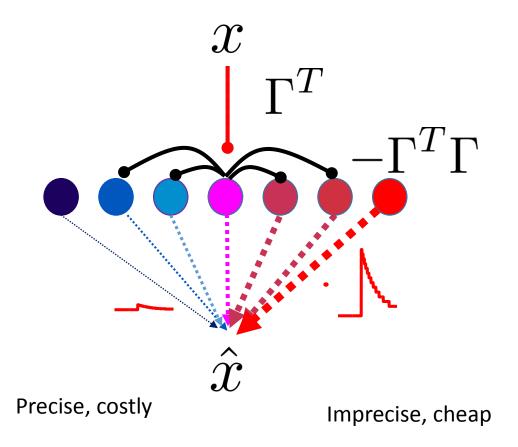
$$\mathbf{r} = \underset{\mathbf{r}^* > \mathbf{0}}{\operatorname{rr}} \left(\|\mathbf{x} - \hat{\mathbf{x}}\|^2 + \mu \sum_{i} r_i^{a^2} \right)$$

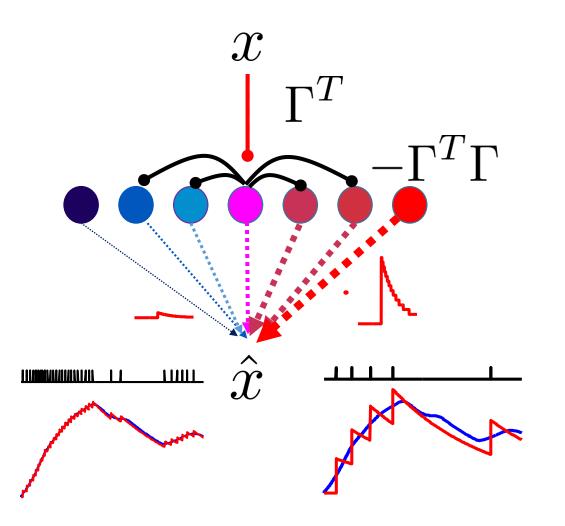
Cumulative cost for high firing rates

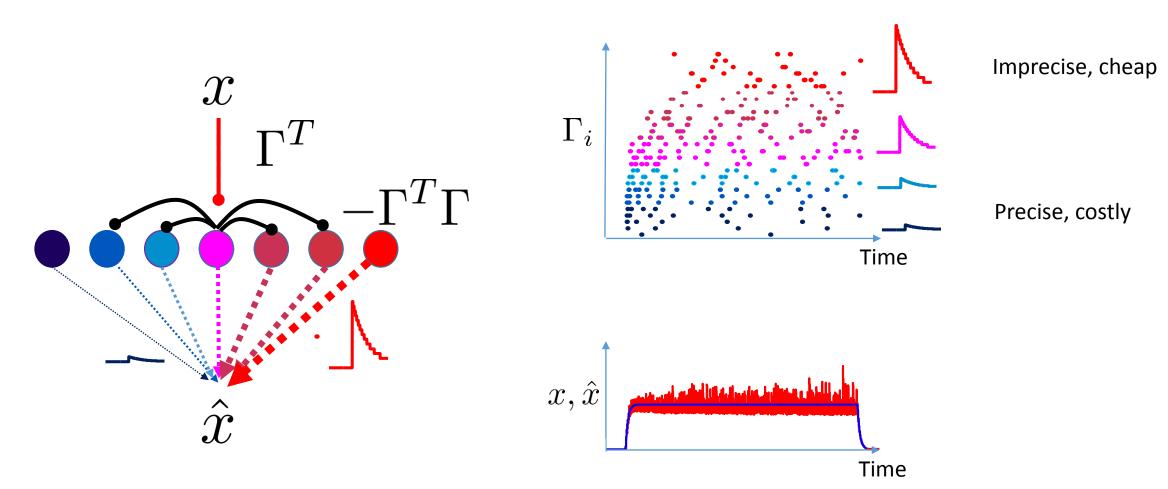
$$\mathbf{r} = \underset{\mathbf{r}^* > \mathbf{0}}{\operatorname{rmin}} \begin{pmatrix} \mathbf{r} & \mathbf{r}_a > \mathbf{r} \\ \downarrow & \downarrow \\ \mathbf{r}_a^* \\ \mathbf{r}_i^* > \mathbf{0} \end{pmatrix} \begin{pmatrix} \mathbf{r}_a > \mathbf{r} \\ \downarrow \\ \mathbf{r}_a^* \\ \mathbf{r}_i^* \end{pmatrix}$$

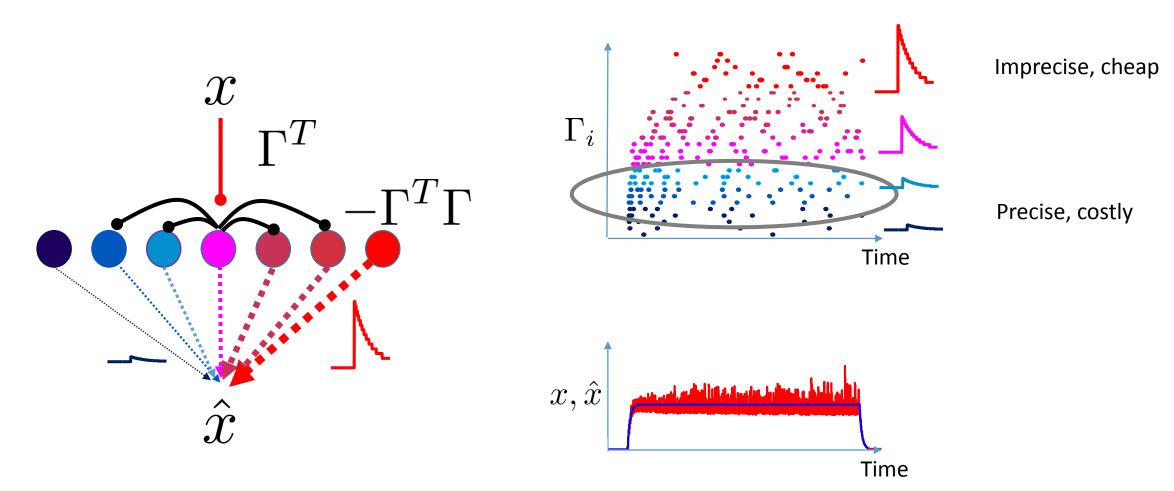
$$\mathbf{Cumulative \ cost \ of \ firing}$$

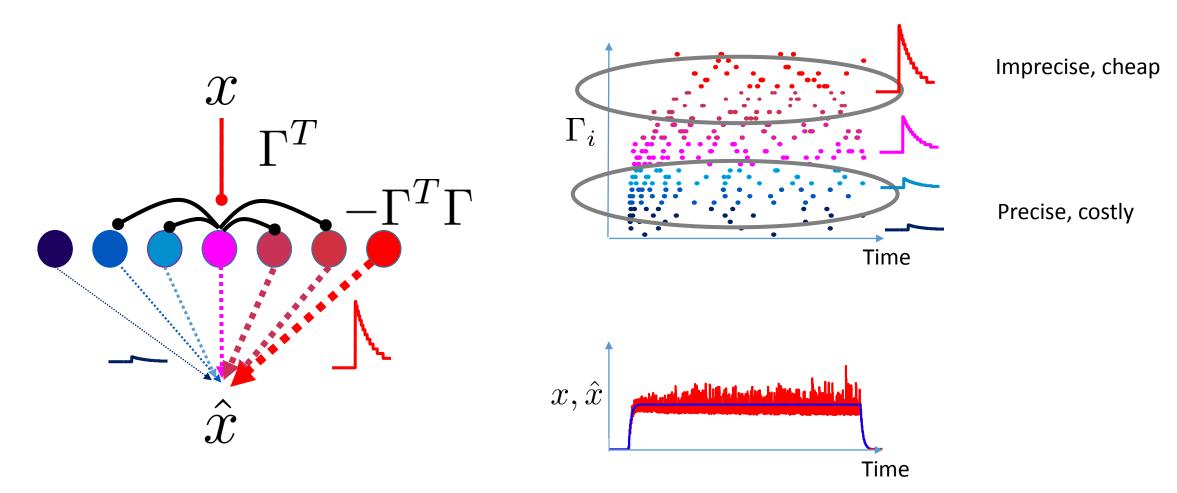
$$\mathbf{V}_i = \sum_i \Gamma_{ij} x_j - \sum_k \Omega_{ik} r_k - \frac{\mu r_i^a}{\mu r_i^a}$$
Feedforward Input Recurrent inhibition Activity dependent suppression

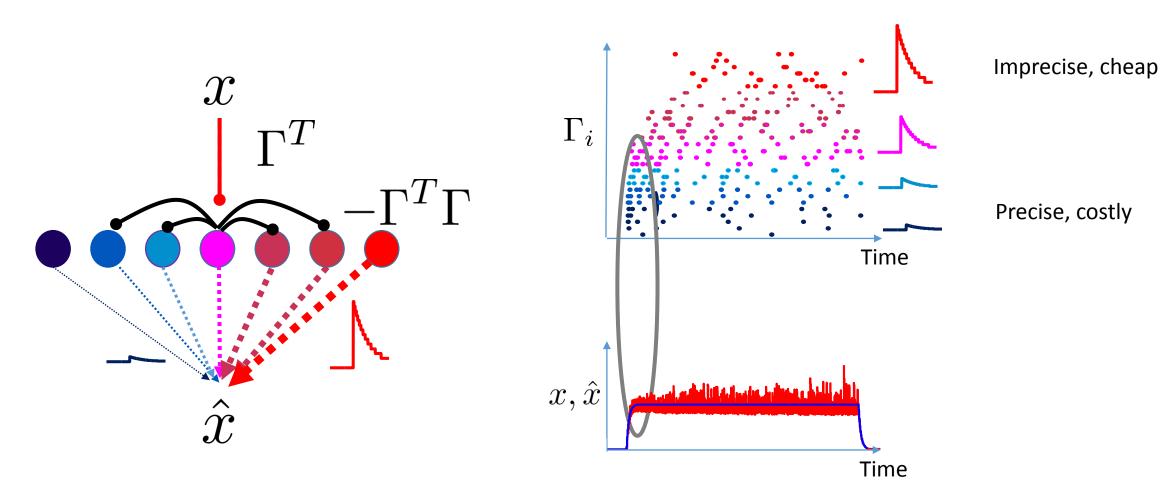


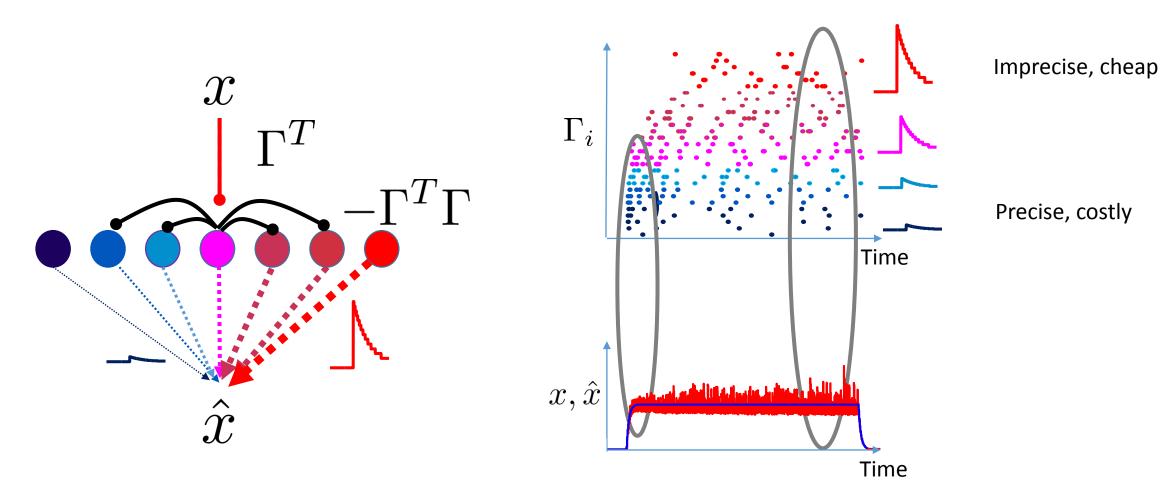




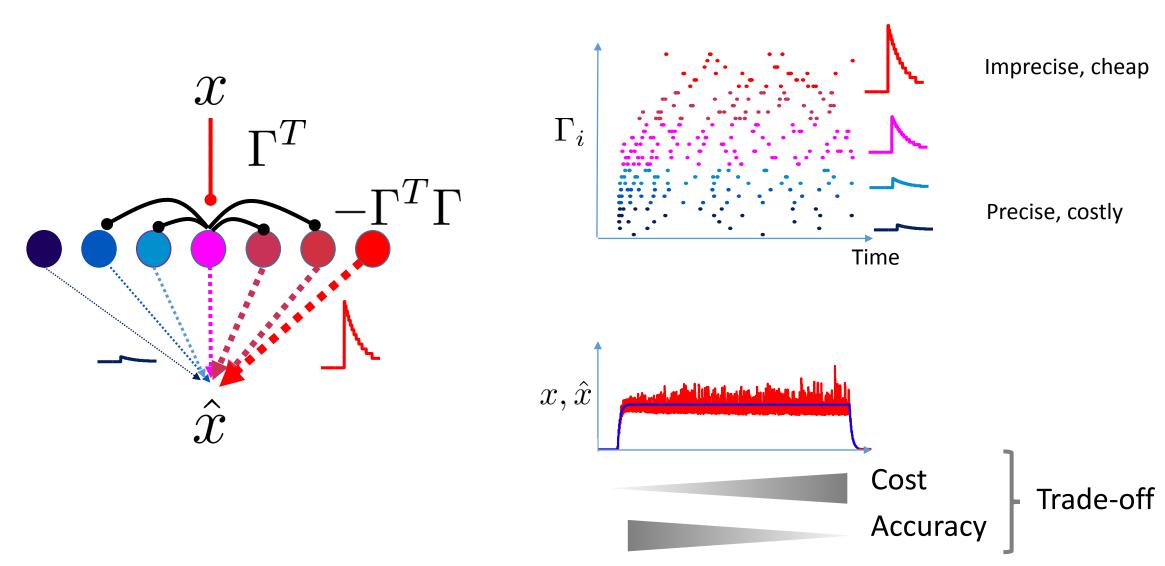




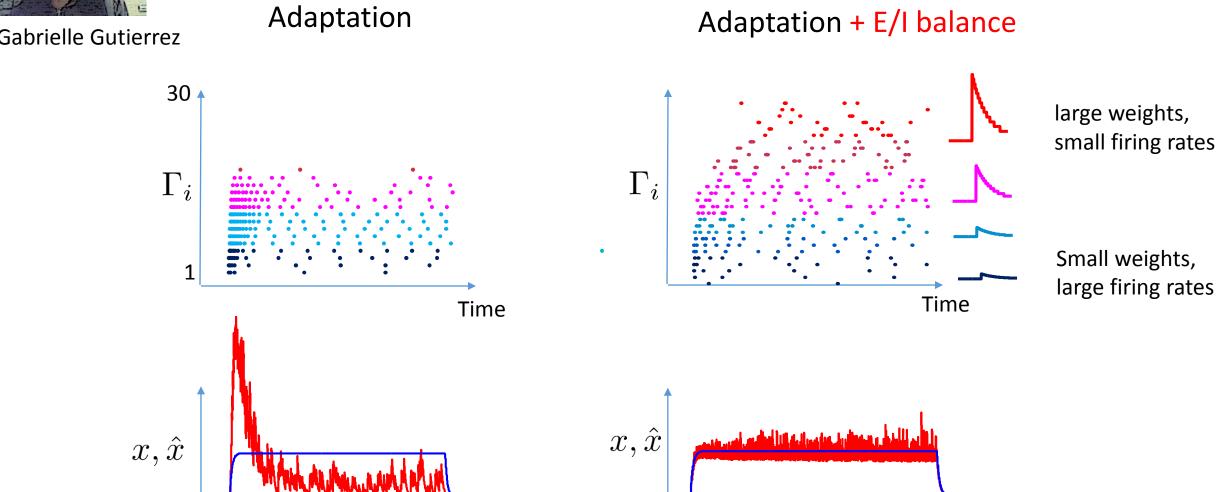




Cost, adaptation and homeostasis



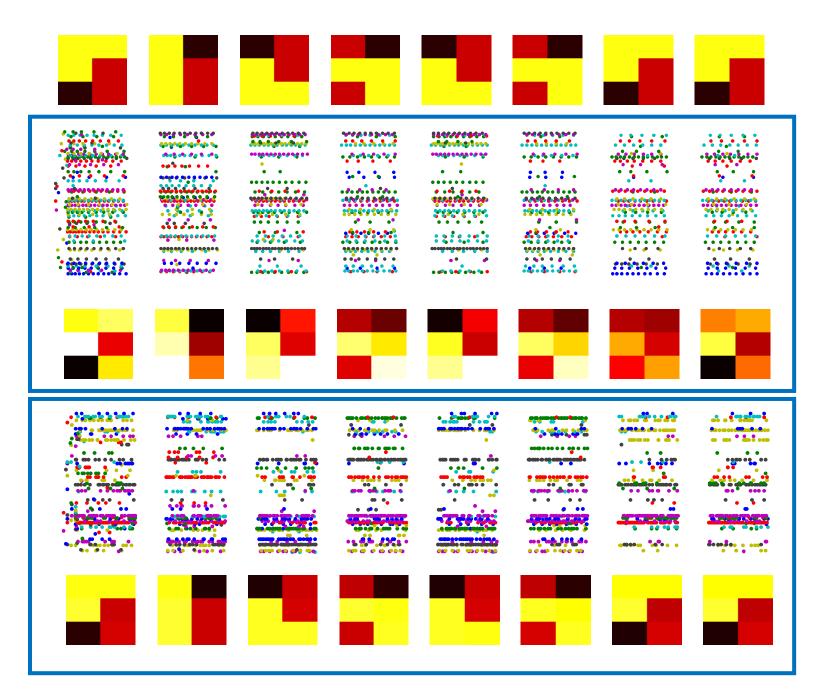
Cost, adaptation and homeostasis



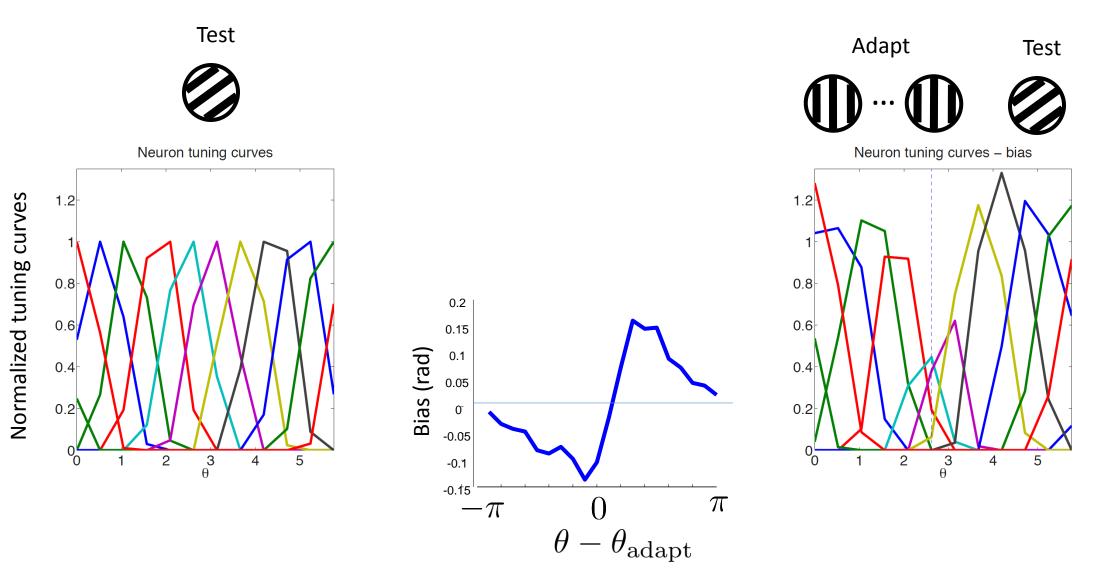
Presented stimuli:

Adaptation

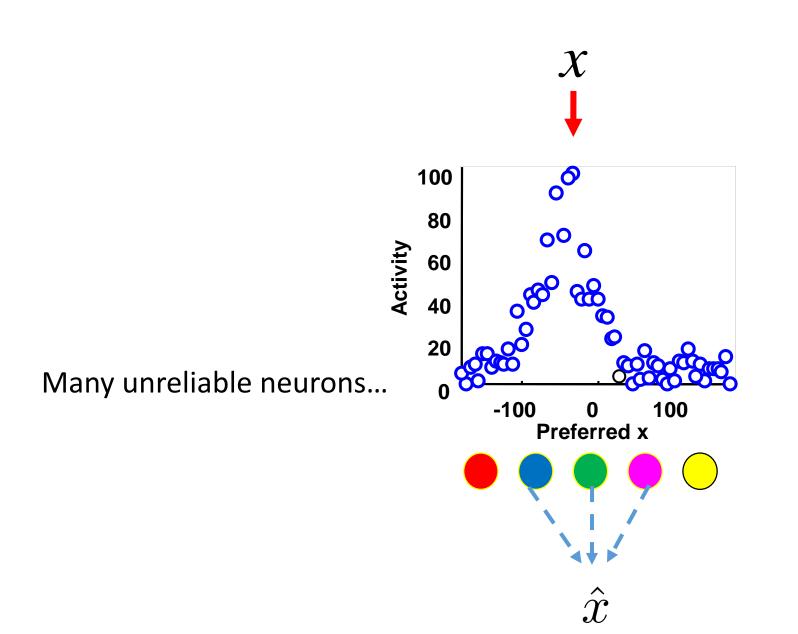
Adaptation + E/I Balance



Orientation Adaptation (tilt illusion)



Population coding



Population coding

