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Deep Blue beats Garry Kasparov (1997) 
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Computers outperform human in all logical &  
arithmetic operations. 

Living organisms outperform computers and 
robots in all tasks involving uncertainty, e.g. 
action & perception in the real world. 

A difference exploited in the « captcha » tests. 3 

LOGIC WORLD      ≠       REAL WORLD  
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OVERVIEW 
 

1. The one-to-many problem 
  
2. The Bayesian Brain 
 
3. The Bayesian Cell 
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The One-to-Many Problem 
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Perception as an inference problem: an old idea 
 

H. Helmholtz (1867), E. Mach (1897), …  
Knill & Richards (1996), Kersten, Mamassian & Yuille (2004), … 

Here, an example from Ernst Mach, The Analysis of Sensations (1897) 
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A vertical line in the image ⇒ A vertical rod in space ? 
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A vertical line in the image ⇒ Any object in space contained in the plane Π 

Obs. 

Π 
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A tilted rod… 
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A planar curve 

GDR BioComp 2015      Variability and Probability 



11 
Or a planar crocodile ? 
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But the most likely object is a vertical rod since its image  
does not depend on the particular position of the observer. 
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High P(Image | Object): We do not believe in coincidences ! 
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The Bayesian approach: priors, likelihood and free variables 

Sensory Observation O Perceived Object or State S 

Priors P(S), P(F) 
(symmetry, regularity, …) 

Likelihood P(O | S, F) 
(The sensor function) 

Posterior P(S | O) ∝ P(S) ΣF P(F).P(O | S, F) 
(Bayes’ rule, marginalization rule and normalization) 

Light source F 



3D Shape from shadow 

A priori, the light comes from above (The sun !): the shading is interpreted as  
« hollows » (if the dark part is above) or « bumps » (if the dark part is below). 
 
Mamassian & Goutcher (2001) Prior knowledge on the illumination position. Cognition 81: B1-9 
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Whiteness from 3D structure 

Zone B (shadowed by the green cylinder) seems whiter than zone A (unshadowed). 
However, both zones have the same objective luminous intensity (see right panel). 
 
Adelson  & Pentland (1996) The perception of shading and reflectance. In: Perception  as Bayesian  
Inference (Knill & Richards, eds.) Cambridge University Press. 16 
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3D shape perception: the role of priors for regularity (perspective), 
rigidity (optic flow) and stationarity (self-motion) 

(the mental power test) 
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Patrick Hughes « Reverspective » 
http://www.patrickhughes.co.uk/ 

http://www.patrickhughes.co.uk/


3D shape perception: the role of priors for regularity (perspective), 
rigidity (optic flow) and stationarity (self-motion) 

Wexler, Panerai, Lamouret & Droulez, Nature (2001)      Van Boxtel, Wexler & Droulez, Journal of Vision (2003) 18 
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Patrick Hughes « Reverspective » 
http://www.patrickhughes.co.uk/ 

http://www.patrickhughes.co.uk/


Object motion 

Subject motion 

Experiment Model 

Colas, Droulez, Wexler & Bessière (2007) Biological Cybernetics, 97:461-477 19 

Object motion 

Subject motion 
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Probability Matching 

25 % 75 % 

Koehler & James (2009) Probability matching in choice under uncertainty: 
Intuition versus deliberation. Cognition 113: 123 
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Variability in perception 

● The problem in perception (e.g. 3D perception) is NOT to get rid of 
sensory noise, but to solve ambiguities and indeterminacies. 
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Variability in perception 

● The problem in perception (e.g. 3D perception) is NOT to get rid of 
sensory noise, but to solve ambiguities and indeterminacies. 
 
● In the past two decades, Bayesian models have been quite successful in 
explaining a large variety of perceptive effects (“illusions”). 
 

GDR BioComp 2015      Variability and Probability 



23 

Variability in perception 

● The problem in perception (e.g. 3D perception) is NOT to get rid of 
sensory noise, but to solve ambiguities and indeterminacies. 
 
● In the past two decades, Bayesian models have been quite successful in 
explaining a large variety of perceptive effects (“illusions”). 
 
● The output of these models P(Searched | Observed) is a probability 
distribution but the whole computation is in principle DETERMINISTIC: 

P(S | O) ∝ P(S) ΣF P(F).P(O | S, F) 
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Variability in perception 

● The problem in perception (e.g. 3D perception) is NOT to get rid of 
sensory noise, but to solve ambiguities and indeterminacies. 
 
● In the past two decades, Bayesian models have been quite successful in 
explaining a large variety of perceptive effects (“illusions”). 
 
● The output of these models P(Searched | Observed) is a probability 
distribution but the whole computation is in principle DETERMINISTIC: 

P(S | O) ∝ P(S) ΣF P(F).P(O | S, F) 
 
● Question: why perceptive or motor responses exhibit a large variability 
from trial to trial, or from time to time ? 
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Variability in perception 

● The problem in perception (e.g. 3D perception) is NOT to get rid of 
sensory noise, but to solve ambiguities and indeterminacies. 
 
● In the past two decades, Bayesian models have been quite successful in 
explaining a large variety of perceptive effects (“illusions”). 
 
● The output of these models P(Searched | Observed) is a probability 
distribution but the whole computation is in principle DETERMINISTIC: 

P(S | O) ∝ P(S) ΣF P(F).P(O | S, F) 
 
● Question: why perceptive or motor responses exhibit a large variability 
from trial to trial, or from time to time ? 
 
● Could individual subject responses be “samples” drawn from an internally 
estimated probability distribution ? 
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● How probability distributions are represented in the brain ? 
 
● How Bayesian inferences are performed by neurons ? 

The Bayesian Brain 
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A variety of theoretical propositions 

● Direct code : single neurone activity ↔ one probability value 
 
r ≈ P(S = s) …. r ≈ Log(P(S = s)) … r ≈ Log(P(S = 1) / P(S = 0)) 
 
Anastasio et al (2000); Gold & Shadlen (2001); Rao (2004); Yang & Shadlen (2007); … 

 
● Population code : ensemble of neurones ↔ linear combination 
     of a set of basis functions 
P(S = s) ≈ Σi ri.hi(s) or Log(P(S = s)) ≈ Σi ri.hi(s)  
 
Zemel, Dayan & Pouget (1998); Ma, Beck, Latham & Pouget (2006); … 

 
● Sampling code: instantaneous population activity ↔ random 
   draw from a probability distribution 
 
Lee & Mumford (2003); Fiser et al (2010); Maass (2014); … 
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And a variety of sources of stochasticity in neural activity 

Data and model from Korn et al, Science 213 (1981)  
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One of the main source: 
the probabilistic release of 
neurotransmitter 
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Evidence for a direct code (Log Likehood Ratio) 

Yang & Shadlen, Nature 447 (2007) 

Accumulation of 
evidence (in LLR) 

Activity in LIP 
(overtrained monkeys) 

But LLR and P(Choice) are highly 
correlated ! 
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Evidence for a population code (Tuning curves) 

In cats: Hubel & Wiesel, J. Phys. (1959). In monkeys: Hubel & Wiesel, J. Phys. (1968) 

Ma, Beck, Latham & Pouget, Nature Neurosc. 9:1432 (2006) 
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Neural noise: an essential ingredient for probabilistic inference ? 

One neuron per (discrete) variable One population per (binary) variable 

Fiser et al, Trends in Cognitive Sc. 14 (2010) Legenstein & Maass, PLoS CB (2014) 
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● Direct codes and population codes aim at representing explicitly the 
probability distributions. Computation is based on exact inference (or close 
to exact inference). Neural “noise” is conceived as a nuisance. Might be not 
suited for solving problems in high dimension spaces.  
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● Direct codes and population codes aim at representing explicitly the 
probability distributions. Computation is based on exact inference (or close 
to exact inference). Neural “noise” is conceived as a nuisance. Might be not 
suited for solving problems in high dimension spaces.  
 
● Sampling code: accounts for biological stochasticity, well suited for hard 
inference problems. But the relevance of known sampling approach (e.g. 
MCMC) in neurobiology has yet to be demonstrated. 
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The Bayesian Cell 

Neuronal activity is also controlled 
by complex biochemical networks 

Unicellular organisms have also 
developed well adapted behaviors in 
spite of uncertain environment 

Perkins & Swain, Strategies for cellular decision-
making, Mol. Syst. Biol, (2009)  

Euglena 
Chlamydomonas 

Integration of dopamine and glutamate signals  
in neurons of the basal ganglia (striatum and 
pallidum), role in reinforcement learning. Frank 
et al, Nature Neurosc. (2009)  
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Fernandez et al, DARPP32 is a robust integrator of Dopamine and Glutamate Signals. 
PLoS Comp. Biol. (2006)  

Striatum Pallidum 
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DARPP32:  
3 sites of phosphorylation → 8 states 
Fernandez et al (2006)  

A Markov model of allosteric transitions  
Droulez et al (2015)  
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Equivalence between Bayesian inference and cascades of biochemical systems 

The output probability quotient is a rational 
function (with non negative coefficients) of 
likelihood quotients. 

Markov model of an biochemical module: 
NY = number of second messengers 
Φ1(x) = rate of release (by M1) : a RFNC of x 
φ2(x) = rate of removal per messenger (by M2) 
⇒ At equilibrium P(NY) is a Poisson 
distribution of parameter λ(x) = Φ1(x) / φ2 (x) 
 
The output concentration y is a RFNC of x.  
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Towards a Bayesian model of sensory-motor behavior in unicellular organisms  

Channelrhodopsin: the molecular 
light sensor in the eyespot 

Markov model of Channelrhodopsin (4 states) 

Example of simulation (Colliaux, Bessière & Droulez, 2014) 
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Towards a Bayesian model of sensory-motor behavior in unicellular organisms  

Simulation of phototaxis behavior (Colliaux et al, ECAL 2015) 
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Experimental results 
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The Bayesian cell hypothesis 

● In complement to the usual neurocomputational approach (e.g. integrate-
and- fire neurons), models of the underlying biochemical signaling networks 
are required to understand how the brain could perform Bayesian computing. 
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The Bayesian cell hypothesis 

● In complement to the usual neurocomputational approach (e.g. integrate-
and- fire neurons), models of the underlying biochemical signaling networks 
are required to understand how the brain could perform Bayesian computing. 
 
● Unicellular organisms have no brain, no neurons, but a number of 
(molecular) sensory and motor devices. They can adapt to highly changing 
and uncertain environments. Why such simple organisms would not use a 
kind of basic probabilistic reasoning ? 
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The Bayesian cell hypothesis 

● In complement to the usual neurocomputational approach (e.g. integrate-
and- fire neurons), models of the underlying biochemical signaling networks 
are required to understand how the brain could perform Bayesian computing. 
 
● Unicellular organisms have no brain, but a number of (molecular) sensory 
and motor devices. They can adapt to highly changing and uncertain 
environments. Why such simple organisms would not use a kind of basic 
Bayesian computing ? 
 
● The equivalence between Bayesian inferences and the behavior of large 
populations of macromolecules involved in cell signaling opens new 
perspectives to understand how single cells and unicellular organisms could 
process uncertain information.  
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CONCLUSION 

1. Bayesian theory of perception and behavior : a success story. 
 
2. Variability in behavior and variability in the way brain and cell process 
information. 
 
3. Is variability a “noise” due to non reliable functioning of biological 
systems ? 
 
4. Or, is variability a useful “ingredient” of Bayesian computing (for 
biological systems, but also for future artificial systems) ? 
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Thank you for your attention ! 
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