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Ceatech Bit (0,1) and CMOS technology

e Complementary Metal Oxyde Semiconductor
® A pretty good switch (bit)

vdd

1

1

\ss

CMOS inerter (up)

NAND gate (left)

(The function semantics is
hardcoded into the circuit
layout)

Clut

(source wikipedia)
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http://en.wikipedia.org/wiki/Image:CMOS_Inverter.svg
http://en.wikipedia.org/wiki/Image:CMOS_Inverter.svg
http://upload.wikimedia.org/wikipedia/commons/c/cc/N-channel_enhancement-type_MOSFET.JPG
http://upload.wikimedia.org/wikipedia/commons/c/cc/N-channel_enhancement-type_MOSFET.JPG
http://en.wikipedia.org/wiki/Image:CMOS_NAND.svg
http://en.wikipedia.org/wiki/Image:CMOS_NAND.svg

Von Neumann Architecture

® The Von Neumann architecture is an implementation
of Turing’s machine

® Together with the idea of program stored in memory,
the V.N. architecture automates computing tasks

Memory
Why did they - 7 VN bootleneck
name this i } Memory access
after me? Arith metlc
Control [ Logic _
Unit L Unit Logic and
Accumulator memOfy are

/* \\ separated

Input Output

John Von Neumann
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Microprocesors shrinks

Relative Process Technology
Scaling from 14004 - Core Solo
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The CMOS VN triangle

= The « quasi » perfect fit between binary coding, CMOS

technology and the VN architecture made for the rapid evolution

of computers.

= Every shrinking step allowed for « free » improvements in
performances: clock increase, power decrease...

= |If this is still true, it’s at the price of clever tricks that have their

share of problems: reducing Vdd, number of cores
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ceatech The cost of data movements

® With 22nm CMOS

O The cost of switching 1 bit in a transistor is approximagiely 10-12 joule
O The cost of moving 1 bit on a wire is approximately 10-12 joule / mm
O Moving a 64 bits word on a 1cm bus @1GHz requires 0.64 W/cm!

® Moving data requires much more energy than computing!

The High Cost of Data Movement

20mm

64-bgoli:)lj — @ 26 pJ 256 pJ 16nd [ gm

256-bit Efficient
buses S00pJd ] off-chip link

256-bit access
8 kB SRAM

Source: Bill Dally, « To ExaScale
and Beyond »
www.nvidia.com/content/PDF/sc_2
010/theater/Dally_SC10.pdf
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Data deluge

® In 2010 (a long time ago) the world generated more than 1.2 zetta bytes
(10%%) of new data

® ->50% more that all data previously generated, and we’re in 2015!!!
® The amount of data increases faster that the computing power

6 —
e=gu=Data Growth le gap du "data
5 - deluge"
Moore's Law
3 -5 ;
120 =1 DVD stack /

. 300000 km high

\

2006 2007 2008 2009 2010
1DVD ~5GB
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Could we imagine something
different? another paradigm?



FROM RESEARCH TO INDUSTRY

Ceatech

Which Computing Paradigm?

Physical
Implementation

Implementation
Technology

Computing

Information
Coding

. ~radigss

Computing
Architecture

Programming

Von Neumann

Which Computing
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Parallélisme Massif
= Passage a I’échelle (scalability)

= Tres faible puissance 5
= Tolérance a la variabilité -
= |déal pour le traitement des informations naturelles

= D’importants programmes de recherche sont en cours: FET-FlagShip
Human Brain Project

— —\ "
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C. Gamrat
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FROM RESEARCH TO INDUSTRY

ceatech Neuromorphic Computing, an old story!
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Biological neural network

T’;ﬁv , [1] W. S. McCulloch and W. Pitts, “A
- logical calculus of the ideas
Immanent in nervous activity,” Bull.
e e Math. Biophysics, no. 5, pp. 115-
- 133, 1943.

Neurons (i) Wii Synapse Neurons(k)
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\ deas Immanent in Nervous Activity A Logical Calculus of Ideas Immanent in Nervous Activity

observations and of these to the facts is all too clear, for it is ap-
parent that every idea and every sensation is realized by activity
within that net, and by no such activity are the actual afferents
fully determined.

There is no theory we may hold and no observation we can make |
that will retain so much as its old defective reference to the facts \
if the net be altered. Tinnitus, paraesthesias, hallucinations, de-
lusions, confusions and disorientations intervene. Thus empiry |
confirms that if our ncts are undefined, our facts are undefined, i
and to the “real” we can attribute not so much as one quality
or “form.” With determination of the net, the unknowable object !
of knowledge, the “thing in itself,” ceases to be unknowable.

To psychology, however defined, specification of the net would
contribute all that could be achieved in that field—even if the
analysis were pushed to ultimate psychic units or “psychons,” for
a psychon can be no less than the activity of a single neuron.
Since that activity is inherently propositional, all psychic events |
have an intentional, or “semiotic,” character. The “all-or-none’
law of these activities, and the conformity of their relations to |
those of the logic of propositions, insure that the relations of

Post-Synaptic Activation b
Potential Function
z; = f(V;)
' B

Q.

Yy

- EXPRESSION FOR THE FIGURES

In the figure the neuron e: is always marked with the numeral i upon the
body of the cell, and the corresponding action is denoted by “N” with : as sub-
seript, as in the text.
Figure 1a  N«) -
Figure 1b Nu(f) -
Figure 1c Na(f)
Nt} -

Warren McCulloch

Nig — 1)

Ni(t = D v Na(t — 1)

SN = 1)

N =1

CV NGt —3) .~ Nt —2)
Na(t = 1)

Figure 1d
Figure le

Figure 1f Ao NWt — 1) o Nu(t = 1DV Nt = 1) . v Nalt — 1) +
Net — 1) Nat — 1)
=~ Nt —2) . Nalt —2) VNt —2) . v. Nult —2) .
Na(t —2) . Nalt —2)
h Figure 1g Naft —2) . ~ Nt — 3)
Figure 1h Nt — 1)« Nult — 2)

ST

Nt — 1) o v N — 1)« (Ex)t — 1. Na(x) . Na(x)

FIQURE 1 Figure 1i

Walter Pitts
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FROM RESEARCH TO INDUSTRY

Ceatech Perceptron: first neuromorphic engine

Wo

Frank Rosenblatt

(Robert Hecht-Nilsen:
Neurocomputing, Addison-Wesley,
1990)

[1] F. Rosenblatt, “The perceptron: a
probabilistic model for information
storage and organization in the brain.,”
Psychological Review, vol. 65, no. 6, pp.

386-408, 1958.

Pyychologicol Review
Vo{f 65, No. 6, 1958

THE PERCEPTRON: A PROBABILISTIC MODEL FOR
INFORMATION STORAGE AND ORGANIZATION
IN THE BRAIN'!
F. ROSENBLATT
Cornell Aeronawtical Laboratory

If we are eventually to understand
the capability of higher organisms for
perceptual recognition, generalization,
recall, and thinking, we must first
have answers to three fundamental
questions:

1. How is information about the
physical world sensed, or detected, by
the biological system?

2, In what form is information
stored, or remembered ?

3. How does information contained
in storage, or in memory, influence
recognition and behavior?

© CEA. All rights reserved

and the stored pattern. According to
this hypothesis, if one understood the
code or “'wiring diagram'’ of the nerv-
ous system, one should, in principle,
be able to discover exactly what an
organism remembers by reconstruct-
ing the original sensory patterns from
the ““memory traces' which they have
left, much as we might develop a
photographic negative, or translate
the pattern of electrical charges in the
“memory’ of a digital computer,
This hypothesis is appealing in its
simplicity and ready intelligibility,
and a large family of theoretical brain

| 15
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FROM RESEARCH TO INDUSTRY

Ceatech The big depression of the 1970’s

* Minsky an Papert’s book on
Perceptrons is seen by many as the
cause of the drop in ANN research
(the XOR problem)

« But that’s not fair to their work.

Ty
S\

Marvin Minsky & Seymour Papert
Stage 1 Siage 2 Stage 3

Yy Usp U o Uz Uz Wz Ya
g

Input .
Stage |

o
Cell plang \\
Receptive fiald

Kunihiko Fukushima

Stage 4

Usy

Lay\er: Layer Layer Layer Layer Layer Layer - Layer Layer

Uea

[1] M. L. Minsky and S. A. Papert,
Perceptrons: An Introduction to

Computational Geometry. The MIT Press,
1070

cepron wnar can recogmze wnen &
figure is connected, as opposed to being
disconnected. This holds for both di-
ameter-limited and order-limited per-
& ceptrons, though the proof for the first
B()Ok Revlews s direct and for the latter quite com-
plex. Tn general the results are of this
negative character. For instance, it is
possible for there o be perceptrons of
order 1 for two predicates, yet no per-
ceptron of finite order that will rec-
standing of Information Processes ognize the disjunction (or, similarly,
the conjunction) of the two predicates.
puta- in some fixed way, the «, and ask if In the development of the theory.some
the evidence adds up to cnough, 0, to  powerful tools are constructed. Perhaps
Am- warrant saying that X is an instance  the most central is the group-invariance
of the pattern (equivalently, deciding theorem, which states that if a percep-
yes). Although this corresponds to the  tron is o be invariant over a (finite)
oft-expressed intuitive notion that judg-  group of transformations on the
ng ments are made by “weighing the then there must exist a
evidence,” it must be made clear that s wes

perceptrons are an extremely restricted
class of decision devices. In most real
decisions  the much exploring of

conseq g for new infor-  theorem arises from the close connec-
- mation, redefinition of the situation, tion between notions of what is inter-
. and 50 on. None of these processes metrically and properties that
expression in the perceptron, as formu- dant under groups of trans-
. lated. Nevertheless, perceptrons still formation. Thus the theorem reflects
constitute a nontrivial type of decision  something of the geometry of the ret-
element, and—as Minsky and Papert ina in the algebraic structure of the
note—if we cannot understand the be- perceptron.
ithin havior of perceptrons we have lile  Still other results concern the fact
chance with the morc complex decision that though order-limited perceptrons
processes. exist for some classes of patterns, their
The book states and proves a large  coefficients (more precisely, the ratio
a  number of theorems about perceptrons.  between the smallest and largest coeffi-
the For any interesting theory, one must cie i
in. restrict the clementary measurements

(the ¢), since otherwise the whole st
burden of the decision could be put on
3 ional aspect that is
i A 2

% pe .
considers the ¢ fixed and asks what
e . procedures might discover appropriate
space R. Then a perceptron is a predi- de-  weights to do a particular pattern-
cate which can be represented in the pends must al a circle of recognition task. The information from
form: given diameter (though the whole col-  which the weights are inferred is a
lection of ¢ can cover R many times sequence of instances of the patterns.
over); and order-limited perceptrons, There is a perceptron convergence the-
in which the number of points on which orem which states that a particularly
a ¢ depends must be | iven  simple form of feedback modification
number (though the
ted anywher

as clementary measureme: he

00 s true i ) oo} > 0
A

00 s false it ) a(orec) =
£

where the coeflicients, a, and the thresh-  the
old, 6, are real numbers and the values

[1] K. Fukushima, “Neocognitron: A self-
organizing neural network model for a
mechanism of pattern recognition
unaffected by shift in position,”
Biological Cybernetics, vol. 36, no. 4,
pp. 193-202, 1980.
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FROM RESEARCH TO INDUSTRY

1981, Let’s Roll again

(e
e
R i
— e
_
John J. Hopfield
« The Hopfield net, a recurrent
architecture
» Analogy to physics (Ising)
« Potential Applications
[[_Recar )

[1] J. J. Hopfield, “Neural Networks and
Physical Systems with Emergent Collective
Computational Abilities,” PNAS, vol. 79, no. 8,
pp. 2554-2558, Apr. 1982.

Proc. Noil Acad. Sel. USA
Vol. 79, pp. 2554-2558, April 1962
Biophyiics

Neural networks and physical systems with emergent collective

computational abilities

[associative memory,/ parallel processing/ /i

J. ]. HopFIELD

ble memory/ fail-soft devices)

Dhvision of Chemistry and Biology, California Institube of Technology, Pasadens, Cabiornia §1125; and Bell Laboratories, Murray Hill, New persey 07974

Contributed by John |. Hopfield, Jonuary 15, 1082

wwwﬂmhwm
eongtruction of computers can emerge as col-
properties of systems having a large number of simple
equivalent compenénts (or neurons). The physical meaning of con-
tent-addressable memory is deseribed by an appropriate phase
space [low of the state of a system. A model of such a system is
given, based on aspects of neurchislogy but readily adapted to in-
tegrated circuits. The collective properties of this model produce
a content-addressable memory which correctly yields an entire
memory from any subpart of sufficient size. The algorithm for the
time evolution of the state of the system is based on asynchronous
parallel processing, thlul:l#rlhﬂ collective Wﬂih
clude some capacity for iom, familiarity
categorization, error correction, and time sequence retention.
ﬂunﬂnﬂwwrﬁﬁlnmhwﬁrmmwlﬁdﬂiﬂ!ﬂh
modeling or the failure of individual devices.

Given the dynamical electrochemical properties of neurons and
their interconnections (synapses), we readily understand schemes
that use a few neurons to obtain elementary useful biclogical
behavior (1-3). Our understanding of such simple circuits in
electronics allows us to plan larger and more complex circuits
which are essential to large computers. Because evolution has
no such plan, it becomes relevant to ask whether the ability of
large collections of neurons to perform “computational” tasks
may in part be a spontaneous collective consequence of having
a large number of interacting simple neurons.

In physical systems made from a large number of simple ele-
ments, interactions among large numbers of elementary com-
ponents vield collective phenomena such as the stable magnetic
Arisntatione and damaing in 5 marmetic oestem e the vortes

© CEA. All rights reserved

calized content-addressable memory or categorizer using ex-
tensive asynchronous parallel processing.

The general content-addressable memory of a physical
system

Suppose that an item stored in memory is "H. A. Kramers &
G. H. Wannier Phys. Ree. 60, 252 (1941).” A general content-
addressable memory would be capable of retrieving this entire
memaory item on the basis of sufficient partial information. The
input "& Wannier, (1941)" might suffice. An ideal memory
could deal with errors and retrieve this reference even from the
input “Vannier, (1941)". In computers, oaly relatively simple
forms of content-addressable memory have been made in hard-
ware (10, 11). Sophisticated ideas like error correction in sc-
cessing information are usually introduced as software (10).

There are classes of physical systems whose spontaneois be-
havior can be used as a form of general (and error-correcting)
content-addressable memory. Consider the time evolution of
a physical system that can be described by a set of general co-
ordinates. A point in state space then represents the instanta-
neous condition of the system. This state space may be either
continuous or discrete (as in the case of N Ising spins).

The equations of motion of the system describe a flow in state
space. Various classes of flow pittcml-lmpowuc but the svs-
tems of use for memory particularly include those that flow to-
ward locally stable points from anywhere within regions around
those points. A particle with frictional damping moving in a
patential well with two minima exemplifies such a dynamics.

If the flow is not completely deterministic, the description
is more mmphwled In the two-weﬂ problems above, if the

Eiasinaal Lrnann e ahavantneinad his o fnemenesben @ et ales
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= Siemens : MA-16 Chips (SYNAPSE-1 Machine)

= Synapse-1, neurocomputer with 8xM-A16 chips
= Synapse3-PC, PCl board with 2xMA-16 (1.28 Gpcs)

= Adaptive Solutions : CNAPS

= SIMD // machine based on a 64 PE chip.

= |[BM : ZISC
= Vector classifier engine
= Philips : L-Neuro
= 1st Gen 16PEs 26 MCps
= 2nd Gen 12 PEs 720 MCps

= + [ntel (ETANN), AT&T (Anna), Hitachi (WSI), NEC Thomson
(now THALES), etc...

= CEA’s MIND machine

= Hybrid analog/digital: MIND-128
= Fully digital: MIND-1024




=0 \
Non linear function
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An example : Siemens SYNAPSE

B A matrix multiplying device (MA-16)
== Peak performance 640 MCps

B Synapse-1, neurocomputer with 8xM-A16
B Synapse3-PC, PCl board with 2xMA-16 (1.28 Gpcs)

© CEA. All rights reserved I 21



FROM RESEARCH ToO

INDUSTRY

Ceatech

Intel ETANN chip

E Intel 80170NX ETANN Chip

MODE PROGRAM ADDRESS
INPUTS VOLTAGES INPUTS
1
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A Vwelght
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A
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- ARRAY <
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—
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Les Progres en neurosciences des années 90

® Montrent les limitations de I’approche du perceptron et
introduisent LTP/LTD and STDP

1952 - The teams of Mark Bear and Robert Malenka report that prolonged kow-frequency stimulation eveles homasynaptic LTD
1991-1993 - Tsodyks, Gerstner, van Hemmen devalop associative models with spiking neurans
1994 - Dominique Debanne shows that the timing of postsynaptic depolarization determines the sign of plastidty

P i LTI

— 1947 - Curtls Bell and colleagues discover temporally inverted timing-dapandent plasticity in the electnic fish
— 1958 - Mu-ming Poo's team find in-viva STOF in Xenopus laevis tadpode tectum

— 1000 - Sen Song and Larry Abbott coin the STDP aboreviation

— 2001 - Yang Dan's taam reparts in-viva 5TOP in humars

— 2001 - Sjostrom, Turrigiano, and Nelson show that rats, timing, and depolarization-dependent plasticity co-exist at the same synapse
— 2002 - Rob Froemke and Yang Dan demonstrate that STOP summates non-inearly

— 2001-2007 - The teams of Bonhoeffer, Dan, Shulz, and Feldman report in-ave STOP in rodents

— 2004 - The Martin Heisenberg lab finds timing-dependant plasticity in Drosaphila

— 2005 - Froemke et al report that STDP is location dependent

— 2006 - Sjdstrom and Hiusser and Greg Stuart’s team find irverted STOP at inputs onto distal dendrites

— 1007 - Cassenaer and Laurent report STDP in the locust

v J007-200% - The teams of Jason Kerr, Alfredo Kirkwood and Guo-giang Bi teams demonstrate neuramodulation of 5TDP

Iiime

from Markram et al. “A history of spike-timing-dependent plasticity,” in Frontiers in
Synaptic neuroscience, Vol 3, August 2011

q & I ;f © CEA. All rights reserved 24




Memory Devices

/—%

Volatile Memory Non-volatile Memory

Resistance

£
&
-.--.-.-=-.-.-"
~
&

3 @ Charge Trap Pn;::ia;:’

CE T T
™

e SN

Charge -based Current-based | Phase- Magneto- Interface

Programming & Programming & <: dependent || Resistance || or bulk

Reading Reading Resistance || changes Resistance |
changes changes
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Artificial synapses: the NOMFET example

Collaboration. Dominique Vuillaume group, AE'I Ior,gar;lc I':lka}nopjrtlcle Transistor Behavmg as a
IEMN, CNRS, Lille, France Bio ogica Spl Ing - Adv. Funct. Mater. 2010, 20, 330-337
By Fabien Alibart, Stéphane Pleutin, David Guérin, Christophe Novembre,

st A Stéphane Lenfant, Kamal Lmimouni, Christian Gamrat, and
4 Dominique Vuillaume*
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Ceatech Learning from neuroscience: a STDP Primer

Neuron
AL

4 N

STDP = correlation
H detector
=>» Possible learning
model of the mind

pre-synaptic post-synaptic
Neuron Neuron
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Ceatech STDP experimental demonstration

B U. Michigan, Lu group demonstration

1Jo, S.H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters (2010).

(a) (b) @) =

\ v R\ ;‘5/ Mem{istor memristor synapse

101

3

0

ASynaptic weight (%)

™

N

. D=
To pre-neuron 7,’4/, O &

To post-neuron ;‘;M? \:;: WL o > - -
A Spike Timing {ms)
(b)
(c) (d) 100 3
1.0 m 0.0 4 = & 4
- g 08 . ;
z [T 1 sl «5 g ¢
gos ! _(e::t‘:::::‘ld . / 02 é o % g = LIPS : .
‘5’ )2:10 g‘!;:eepss 7 ;S 9 0o E é 0 L] e.m
—o | = a4 = %
T B s R TR T a7 a— P b 6. T
Voltage (V) Time (sec) A Spike Timing (ms)
B Demonstration on PC memory by Wong group, Stanford
D. Kuzum et al, “Nanoelectronic Programmable Synapses Based on Phase Change Materials ©) . ——t
for Brain-Inspired Computing,” Nano Letters, 2011 L
B Demonstrated on NOMFET devices S
00 M f’} : -
F. Alibart et al. “A Memristive Nanoparticle/Organic Hybrid Synapstor for Neuroinspired 3 Tl " e
Computing,” R '
Advanced Functional Materials, vol. 22, no. 3, pp. 609-616, 2012. o] o R
+ NOMFET #2

At(s)
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FROM RESEARCH TO INDUSTRY

Ceatech Then came memristors: a brief memri-story

IEEE TRANSACTIONS ON CIRCUIT THEORY, VOL. CT-18, NO. 5, SEpTEMBER 1971 . 507

B Introduced by Leon Chua, Memristor—The Missing Circuit Element

1 9 7 1 LEON O. CHUA, SENIOR MEMBER, 1EEE

Abstrack—A new 1 inal circuit el alled the i .
h ized by a relationship b the charge qit) = [*-u i(7) dr
and the fux-linkage o(t) = f'_o v[r] dr is intraduced as the fourth basic I_,%_
circuit el An el ic fleld i ion of this relationship | '
in terms of a quasi-static expansion of Maxwell's equations is presented. b .u-%f-
Many circuit-theoretic properties of memristors are derived. It is shown . m
that this el hibits some peculior behavior different from that 4
exhibited by resistors, ind or capuci These properties lead to a -
number of unique applications which cannot be realized with RLC net-
works alone, (a)

Although a physical memristor device without Internal power supply
has not yet been discovered, operational laboratory models have been
built with the help of active circuits. Experimental results are presented fo i
demonstrate the properties and potential applications of memristors. +
v é]

namre Vol 453 |1 May 2008 | doi:10.1038/nature06932

B Revisited by Strukov etal.,, [FTTERS
2008

The missing memristor found

Dmitri B. Strukov', Gregory S. Snider', Duncan R. Stewart' & R. Stanley Williams'

Anyone who ever took an electronics laboratory class will be fami-  propose a physical model that satisfies these simple equations. In
liar with the fundamental passive circuit elements: the resistor, the 1976 Chua and Kang generalized the memristor concept to a much
capacitor and the inductor, However, in 1971 Leon Chua reasoned  broade of nonlinear dynamical systems they called memristive
from symmetry arguments that there should be a fourth fun-  systems™, described by the equations

damental element, which he called a memristor (short for memory = Tw.ili (3)
resistor)'. Although he showed that such an element has many v="FRlw.ih =
interesting and valuable circuit properties, until now no one has dw

presented either a useful physical model or an example of a mem- ar fiw,d) 4)

ristor. Here we show, using a simple analytical example, that mem-

JOURNAL OF APPLIED PHYSICE VOLUME 33, NUMBER 9 SEFPTEMBER 1942

Low-Frequency Negative Resistance in Thin Anodic Oxide Films

B Spotted way back... G Bt B ey, Hew Yo

(Received February 5, 1962)
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B First Proposed by Snider(1)

I —

V _W Vpost

o <t

—

Synaptic
weight
update

through STDP

post pre post
Vire 4 I'h tore L { I'h tor
Viost 1 I'L/ toost . T rL/ Eost :
I U
e [Lé A
R d;creases R increases

1. G. Snider, Nanoscale Architectures, 2008

2. B. Linares-Barranco et al, Nature Precedings, 2009

,1" [ Post-
s synaptic

spike
/-[> (feedback)
Neurons

=" Pre-synaptic spike

© CEA. All rights reserve

| 31




CAN WE BUILD REAL NEUROMORPHIC SYSTEMS?

CAN THEY LEARN, COMPUTE?

© CEA. Al rights reserved I 32



Ceatech CNT circuit with function learning capabilities

(a)

X1+ X
Bias-

1o(A)

Nanotube devices based crossbar architecture:
toward neuromorphic computing, W. Zhao et al.
Nanotechnology 21, 175202 (2010).

HNFPFL Panini

n —COOPERATION

1074

Function output 10°4

(a) 8 OG-CNTFETs sharing the same gate
and output electrodes.

(b) Id(Vgs) transfer characteristics
showing large variability in the ON-
state but still leading to efficient
learning of functions.

Collaboration with Paris-Sud University,
J.0. Klein’s group
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o -

Exemple of learning of a 2-input
boolean function
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Can it learn? A dog with 2 synapses!

"sight of food"

“sight al Tiend™

“salivation’

=2
2 | Output FE ‘
. . . "salivation” 70
Experimental setup for a Pavlovian associative 0 =
memory based on memristive devices as -2

s

proposed by Di Ventra et col.2

5
Bell 20

1.5
- - 1 O B

1 0. Bichler, W. Zhao, F. Alibart, S. Pleutin, S. Lenfant, D. Vuillaume, C. Salivation g ‘ :

Gamrat, “Pavlov's Dog Associative Learning Demonstrated on Synaptic- v 20 30 40 50

like Organic Transistors”, Neural Computation, 2012 d/aq 7 -

2 Pershin, Y.V. & Di Ventra, M. “Experimental demonstration of associative M °B e

memory with memristive neural networks.” Arxiv 0905.2935 (2009).
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128

AER Sensor
16,384 spiking pixels

A
v

128

Two-layers system
~ 2 million devices with STDP

-

O. Bichler, D. Querlioz, S. J. Thorpe, J.-P. Bourgoin and C.

Gamrat, “Unsupervised Features Extraction from ) |:|
Asynchronous Silicon Retina through Spike-Timing-Dependent Hierarchical Archltecture

Plasticity”, International Joint Conference on Neural Networks Proposal  Elementary Shapes Objects
IJCNN August 2011 patterns
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Recorded stimuli Synaptic maps for 4 neurons on the first layer

Lane5 Lanel

- -
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Hierarchical Architecture

B The architecture can be modularized

B Simulation shows that a hierarchy of 16x16 arrays

yields the same results

ooo® d
........ eoeoee® 2" layer
Lateral . A T TS y

inhibition ' » @‘e» @ 10 neurons

g7 TN\ \AETEL

Group lateral

AER Sensor

inhibition 7 =S . =
16,384 spiking pixels . 1% layer
v 8x8 groups
AN 4 neurons/group
...... ya
—
16

i
! i
- ¥
N

Typical feature maps
emerging within devices
when exposed to a video
scene : walking in the
street.
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B ImageNet classification (authors hired by Google) [1]

== 1.2 million high res images, 1,000 different classes
== T0P-517% error rate (huge improvement)

55
27

Max Max
Stride\| 4 | Po©ling pooling
of 4

N =]
N =
ij
/£
|
L,
w w
\ |'
!
\\|‘
]
5
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!
\|/
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—
w
=
vt
!
\I
o
e
\|’
\|’

384 384

224

- NEYNE=EFSSINZEER
7N EE A N EE
T E

Ll Tk PN Learned features
: “=  on first layer

B Facebook’s ‘DeepFace’ Program (labs head: Y. LeCun) [2]
== 4 million images, 4,000 identities
== 97.25% accuracy, vs. 97.53% human performance
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m Deep Neural Networks all over the place!

MNSIT

Handwritten digits

GTSRB
Traffic sign

CIFAR-10

airplane, automobile, bird, cat,

. - h j ‘
deer, dog, frog, horse, ship, truck PEScaaEsEn

Caltech-101

ImageNet

DeepFace

'—‘—-E.S = B
e
e G - pe

P I S

IM LGEN
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~ 50,000

50,000 +
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~ 50,000

~1,000,00C

~ N
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99.79%
3]

99.46%
[4]

91.2%
[5]

86.5%
[6]

Top-5
83% [1]

97.25%
[2]
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Memristive technologies

PCM RRAM (CBRAM/OXRAM) (...)
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Take away message

A computing paradigm involes much more than a machine

== A way to code information

== A Way to manipulate it

== An architecture (both concrete and abstract) to implement the whole
There is much more in computing than implementing functions
with new materials

== They shall be interconnectable with (std) electronics
== Coding is a key element: boolean? Analog? Events?

Neurmorphic is a good candidate (among others)

== But lots of « synaptic » devices are required for realistic apps: >>10°
== It l0oOks like a promising way for low power embedded cognitive functions

Still a lot of work ahead

== A more formal approach to event coding -> Works starts with Neurospin

PhD and Post-Docs position available
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Annoucements

B PhD and Post-Doc positions available @CEA LIST, Saclay

== PhD position and grant on « Spike coding in neuromorphic architectures »
in collaboration with Neurospin lab, Saclay.

A PhD Subject at the interface of Computer Engineering and Neurosciences
Contact and application:

== POSt Doc position available on « Circuit design for dense arrays of synaptic-
like memristive devices »

Contact:

B Inaugural Workshop of BioComp GDR...ca
== October 4-8, 2015, St Paul de Vence '

The goal of the GDR BIOCOMP is to facilitate interdisciplinary
exchanges in France around a common goal: the realization of bio-
Inspired hardware systems.

First GDR BioComp workshop
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mailto:olivier.bichler@cea.fr
mailto:christian.gamrat@cea.fr
http://gdr-biocomp.fr/en/

Last, but certainly not least....

Many thanks to those without whom this would not be

@ CEA LIST
David Roclin,
Olivier Bichler
Van Huy Mai

®
universite

PARIS-SACLAY

@ CEA LETI
Barbara de Salvo,
Manan Suri
Elisa Vianello ' — 1y S g I
@ Université Paris-Saclay
- Jacques Olivier Klein
- Damien Querlioz
- Chris Bennett

@ CNRS, IEMN, Lille
Dominique Vuillaume
Fabien Allibart
Stéphane Lenfant

@ CNRS, Toulouse
Simon Thorpe

@ Chalmers
- Goran Wendin
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