

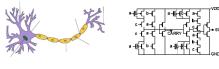
Challenges for Neuromorphic Circuits

Damien Querlioz

Institut d'Electronique Fondamentale Univ. Paris-Sud, CNRS Université Paris-Saclay

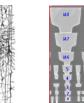
I want to design a hardware that works « like the brain »

□ Here we do not leverage existing hardware


We design a specific hardware, from transistor level, hoping maximum energy efficiency

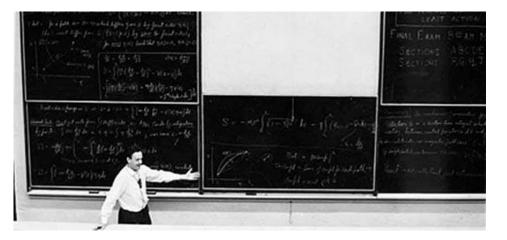
What are the challenges?

Three big challenges



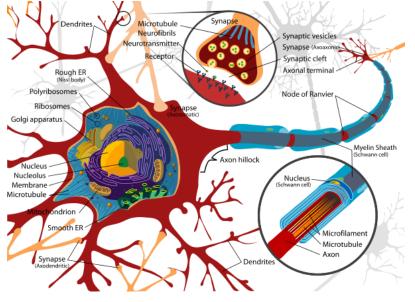
Computing

Communication


Let's compare the brain and electronics...

1. Computing

□ The essence of my system: computing stuff


□ How do I design my basic computing units?

Biology: Neurons and Synapses

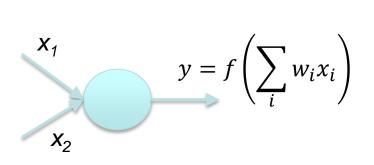
Actual neurons and synapses

wikimedia

Complex structure

Hundreds of ion pumps and ion channels

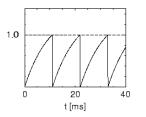
Each element (synapse, ion channel, compartment...) has supercomplex nonlinear dynamics



We are going to design a system w. neurons and synapses
But do I want all this complexity?

Which neuronal model?

The most abstracted neuronal models



State neuron

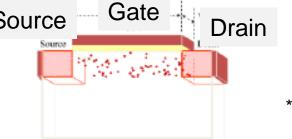
Leaky integrate and fire neuron

$$\frac{dX}{dt} + gX = input$$

If X>X_{th} declare a spike

Between the two extremes, which level of abstraction do I want?

And how do I fabricate my neurons?

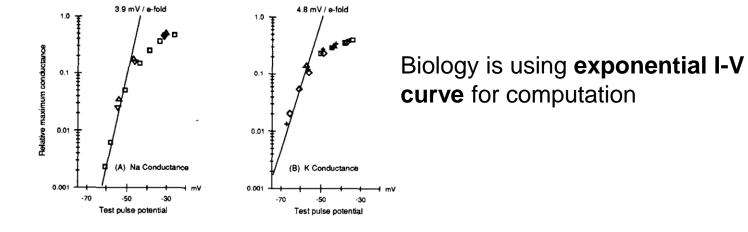

□ No ions un microelectronics technology!

How do I design highly energy efficient neurons and synapses?

A very bioinspired aproach: computing w. transistors leakage

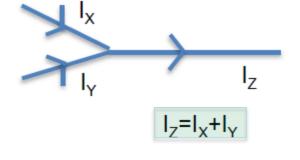
 $I_D \propto e^{\frac{\kappa}{U_T}(V_G - V_S)}$

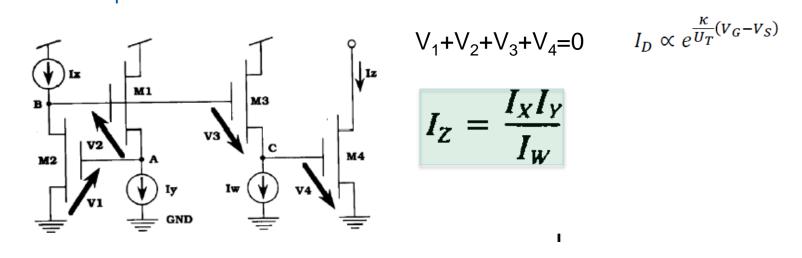
Transistor in the OFF state


* Fineprint: it's a little more complicated than that...

Transistor leakage physics is well known. Normally a problem!
But, inspired by biology, we can use it to compute

Carver Mead





Compute with leakage

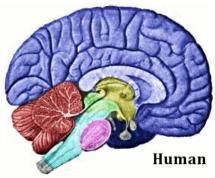
- Current mode. Low current / as slow as te brain
- □ Arithmetic operations easy with Kirchoff law!!!
- □ Sum or difference

Product/ratio « translinear loop »

GDR BioComp - Colloque 2015 - St Paul de Vence

Also differential equations

A circuit to solve dX/dt+gX=gE (e.g. for leaky integrate and fire circuit)

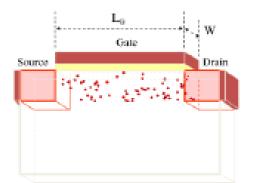

(on paperboard)

Power consumption for « processing » 1 spike
Few pA*0.1s*1V
pJ / operation!

How about human brain?

20W 10¹¹ neurons, 10¹⁵ synapses 10 event/neuron/s

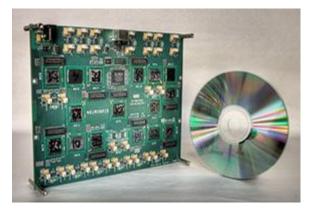
□ My guess 200pJ/spike or 20fJ/synaptic event...



BUT drawback...

Let's go back to our differential equation...

In reality each transistor has different number of dopants, and each I₀ is different


Each neuron will be different!

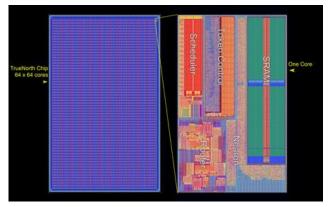
And computing is not everything

Stanford Univ's beautiful Neurogrid system

Benjamin et al, Proc IEEE 2014

1 Million neurons with associated memory and communication Neurons are pure subthreshold CMOS

Incl. memory and communication: Stanford Neurogrid 1nJ/operation, not pJ!!!


And if we do it w. digital logic?

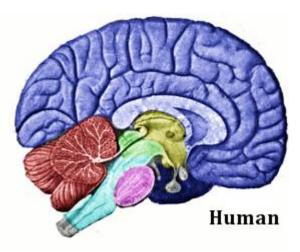
IBM: Truenorth special 28nm process with ultralow leakage

Digital neurons « quite » big: 1300 gates (1000 for neuron + 300 for random number generation)

But very fast -> multiplexing

Everything on chip

Merolla et al, Science 2014



Power consumption only 26pJ/operation!!!

2. Memory

Memory: compare computer and the brain

Computer vs. brain

Computer: von Neumann architecture

Input Device Central Processing Unit Arithmetic/Logic Unit Output Device Memory Unit PROGRAM AND DATA

Brain

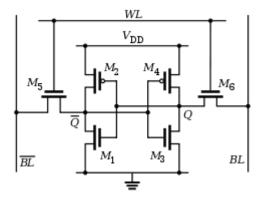
« Program » memory: everywhere!!! « Data » memory: some areas a little specialized, but nevertheless a little everywhere

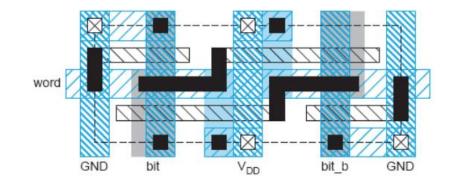
Distributed memory for neuromorhic

Neuromorphic systems need a lot of memory

- Synaptic weight
- Network topology (usually not entirely hardwired)
- Neuron parameters

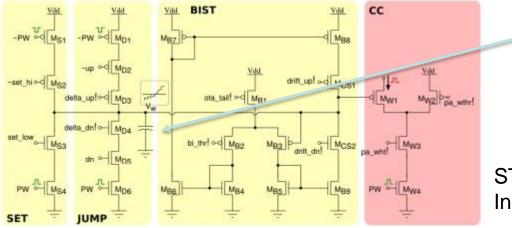
Distributed memory, like in the brain, is better


Sometimes, neuromorphic systems look like big memory chips!!



The issue: the SRAM cell

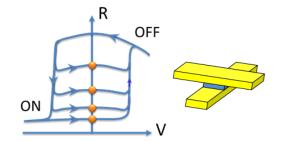
In CMOS, distributed memory is HUGE!!!
1 bit SRAM cell ~140F²

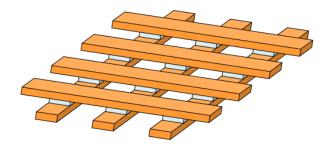

□ Also, it is **volatile**

How about learning?

Learning in CMOS: distributed memory for synaptic weight + learning circuit

STDP circuit Indiveri, Front Neurosci 2015

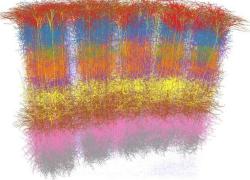

□ This is HUGE . You cannot have many synapses



RRAM/memristors to the rescue?

- RRAMs / memristors are
 - ≻Compact
 - ➢Nonvolatile
 - ➢Intrinsic learning capability

Courtesy of J. Grollier

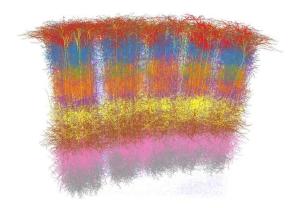

Ideal solution for memory in neuromorphic circuits?

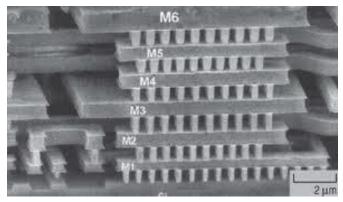
3. Communication

Brains: a neuron receives inputs from 10k other neurons...

Rat cortex Oberlaender et al

Probably key element of brains' capabilities


□ Can we replicate that?

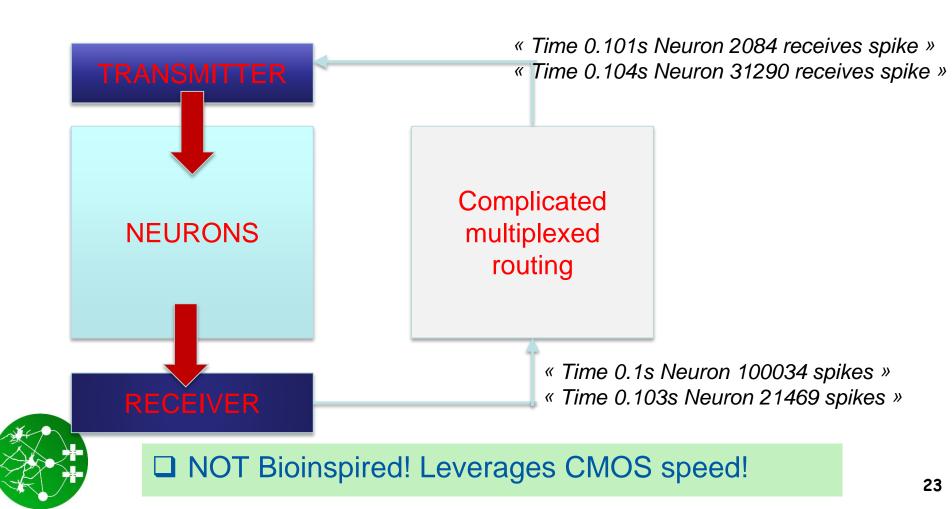


Brain vs. microelecronics

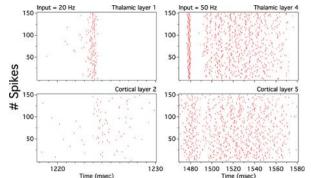
Brain: complex 3-D structure

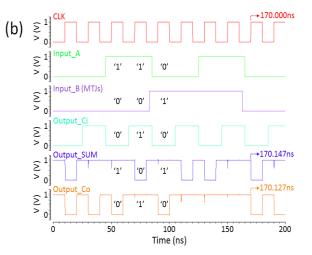
Rat cortex Oberlaender et al Microelectronics: very planar interconnection *Hard to wire stuff!!!*

UMC, TW


□ In microelectronics, we cannot wire like the brain

Connecting neurons: multiplexing!


□ BUT brain is slow and microelectronics is fast...


How to synchronize all these guys?

BRAIN: asynchronous

Some random neuroscience paper

Computers: synchronous (clocked)

Some random digital design paper

Asynchrony

In neuromorphic design, many people actually do asynchronous chips

To help you with design

> Synchonous: EDA tools, multibillion \$ industry

➤ Asynchronous: ...

□ Why is asynchronous hard?

- Dealing with delays
- Example of 4-phase handshaking (on paperboard)

A solution for communication: Address Event Representation (AER)

□ For asynchronous multiplexed communication

Asynchronous events with the associated address

Handshaked

DVS camera (Tobi Delbruck, ETH Zurich) can communicate w. all kind of neuromorphic systems w. AER

Conclusion

There are many technical options for neuromorphic, all with advantages/drawbacks. So really no universal solution. Technical choices will depend on

- Speed needed (real time or accelerated)
- Network size
- Do I need learning?
- What complexity for neurons/synapse models ?

Dedicated hardware. Very attractive but to what extent essential?

Thank you for you attention!

