
Distributed, Asynchronous,
Numerical and Adaptive Computing

From neurons to behavior

Nicolas P. Rougier
INRIA - University of Bordeaux

Institute of Neurodegenerative Diseases, France

GDR BioComp Workshop
Saint Paul de Vence, October 2015





Brains in numbers

• C.Elegans→ 302 neurons

• Mouse→ 71,000,000 neurons

• Hamster→ 90,000,000 neurons

• Rat→ 200,000,000 neurons

• Marmoset→ 634,000,000 neurons

• Capucin→ 3,690,000,000 neurons

• Macaque→ 6,376,000,000 neurons

• Human→ 86,000,000,000 neurons

The human brain in numbers [...], S. Herculano-Houzel,
Frontier in Human Neuroscience, 2009



The case of Caenorhabditis elegans
A few neurons for a complex behavior

Sensory motor behavior
Q. Wen, M.D. Po, E. Hulme, S. Chen, X. Liu, S. Wai Kwok, M. Gershow, A. M. Leifer, V. Butler, C. Fang-Yen, T.
Kawano, W.R. Schafer, G. Whitesides, M. Wyart, D.B. Chklovskii, M. Zhen, A.D.T. Samueln, Proprioceptive
Coupling within Motor Neurons Drives C. elegans Forward Locomotion. Neuron, 2012.

Plasticity, learning andmemory
H. Sasakura and I. Mori, Behavioral plasticity, learning, andmemory in C. elegans, Current Opinion in
Neurobiology, 2013.

Decision making
T.A. Jarrell, Y. Wang, A.E. Bloniarz, C.A. Brittin, M. Xu, J.N. Thomson, D.G. Albertson, D.H. Hall, S.W. Emmons,
The Connectome of a Decision-Making Neural Network, Science, 2012.



What really matters ?

Structure ?
• Neocortex

• Basal Ganglia

• Amygdala

• Frontal cortex

Architecture ?
• Connectivity

• Density

• Modularity

• Self-organisation

Other ?
• To recognize self/others

• To imitate

• To use tools

• To communicate



Experimental & Theoretical frameworks

Biological framework

→ Anatomical facts

→ Physiological recordings

→ Experimental data

Cognitive framework

→ Subsumption architecture

→ Embodied cognition

→ A�ordances, emotions, etc.

Computational framework

→ Computational paradigm

→ Plasticity & learning

→ Evaluation of models

Philosophical framework

→ Strong AI / Weak AI

→ Emergence

→ Theories of mind



Where do we start ?

What is/are the right biological level(s) of description ?

• Molecule ?→ neurotransmitters

• Organelle ?→ axons, dendrites, synapses

• Cell ?→ neurons, glial cells

• Tissue ?→ brain lobes & structures

• Organ ?→ brain

Trying to understand perception by studying only neurons is like trying to understand
bird flight by studying only feathers: It just cannot be done. In order to understand bird
flight, we have to understand aerodynamics; only then do the structure of feathers and
the di�erent shapes of birds’ wings make sense.

D.Marr, Vision, 1982



Spatio-temporal framework

Continuous space
G.Schöner, Dynamical Systems Approaches to Cognition, The Cambridge Handbook of Computational

Psychology, 2008.

... stable patterns of neuronal activation ultimately steer the periphery into
dynamical states, fromwhich behavior emerges, without any need to ever
abstract from the space-time contiguous processes that embody cognition.

Continuous time
JP Spencer, S Perone and JS Johnson, The Dynamic Field Theory and Embodied Cognitive Dynamics,

Toward a Unified Theory of Development: Connectionism and Dynamic Systems Theory Re-Considered, 2009.

The first challenge is that sensori-motor systems evolve continuously in real
time, but cognition can jump from one state to another, that is, from one
thought to another



Computational Framework
Rougier & Fix (2011)

A unit is a set of arbitrary values that can vary along time under the influence of other
units and learning.

• Distributed
→ No supervisor nor executive

• Asynchronous
→ No clock, no scheduler

• Numerical
→ No symbols

• Adaptive
→ No a priori knowledge

Gro
up Gro

up

U
n
it

Lin
k

Lay
er

Lin
k Val

ue

Val
ue

Val
ue

We want to make sure that emerging properties are those of the model and not those
of the so�ware running the model.



Neural Fields
Wilson & Cowan (1972), Amari (1977)

Equation
Let u(x,t) be the membrane potential at position x and time t, f a transfer function
andw a kernel of lateral interaction. The temporal evolution of u(x,t) is given by:

τ

time constant

·
∂u(x, t)
∂t

= −u(x, t)

leak term

+

∫ +∞

−∞
w(x, y) · f(u(y, t))

lateral interactions

dy + I(x)

input

+ h

resting potential

Velocity
Unless specified otherwise, we’ll generally consider infinite speed, i.e. instantaneous
transmission of information.



Neural Fields
Wilson & Cowan (1972), Amari (1977)

Function
The activity of a neural field can be interpreted from a functional point of view.

Filter Decision Tracking Memory

Measure
Using a specific set of parameters, the activity of a neural field can also be interpreted
as a measure (of the input).

Input = 0.25 Input = 0.50 Input = 0.75 Input = 1.00



Part 1
The attentive brain



On ne voit que ce que l’on regarde
(We only see what we look at)

“L’Œil et l’Esprit”, Maurice Merleau Ponty, 1961

Everyone knows what attention is. It is the possession by the mind, in clear and vivid
form, of one out of what seem several simultaneously possible objects or trains of
thought. Focalization, concentration, of consciousness are of its essence. It implies
withdrawal from some things in order to deal e�ectively with others, and is a
condition which has a real opposite in the confused, dazed, scatterbrained state
which in French is called distraction, and Zerstreutheit in German.

W. James, 1890



How much blind are you ?



Visual exploration
(Yarbus, 1967)







Visual Attention

Spotlight metaphor
Attention is the capacity to select a relevant region of the sensory space
• Topological region of the sensory space→ spatial attention
• Featural region of the sensory space→ feature oriented attention
• Object as such→ object oriented attention



A computational approach

Theories of Visual Attention

→ Saliency Maps (Itti & Koch, 2001)
Saliencymap is a topographically arrangedmap that represents visual saliency of
a corresponding visual scene.

• Inhibition Of Return (IOR, Posner, 1980)
IOR operates to decrease the likelihood that a previsously inspected item in the
visual scene will be reinspected.

• Premotor Theory of Attention (Rizzolati, 1987)
Attention may derive fromweaker activation of same fronto-parietal circuits.



Saliency maps
(Itti & Koch, 2001)

Image Saliency map



Saliency maps
(Rougier & Vitay, 2006)

• Simple model of visual tracking
• Robustness to noise, distractors and

saliency
• Dynamic & reactive behavior

Saliency

Input

Focus

Competition



A computational approach

Theories of Visual Attention
• Saliency Maps (Itti & Koch, 2001)
Saliencymap is a topographically arrangedmap that represents visual saliency of
a corresponding visual scene.

→ Inhibition Of Return (IOR, Posner, 1980)
IOR operates to decrease the likelihood that a previsously inspected item in the
visual scene will be reinspected.

• Premotor Theory of Attention (Rizzolati, 1987)
Attention may derive fromweaker activation of same fronto-parietal circuits.



Inhibition of Return
(Posner, 1980)
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Inhibition of Return
(Vitay & Rougier, 2005)

• Dynamic Working memory
• Biased competition
• Sequential behavior
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Update
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A computational approach

Theories of Visual Attention
• Saliency Maps (Itti & Koch, 2001)
Saliencymap is a topographically arrangedmap that represents visual saliency of
a corresponding visual scene.

• Inhibition Of Return (IOR, Posner, 1980)
IOR operates to decrease the likelihood that a previsously inspected item in the
visual scene will be reinspected.

→ Premotor Theory of Attention (Rizzolati, 1987)
Attention may derive fromweaker activation of same fronto-parietal circuits.



Making saccades

Occular saccades lead to drastic changes in visual perception.



Visual anticipation
(Fix et al., 2007)

Spatial reference

• Independent of eye movements
• Eye-centered

Action in perception

• To anticipate the consequences
of own actions

• To update working memory
accordingly
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A model of covert and overt attention
(Fix et al., 2010)

Search task
The camera is placed in front of a
visual scene and is able to pan and
tilt. The task can be either to look for a
specific orientation or colour or to
look for a conjunction of such
features.

Visual Scene

Camera position

Visual Field

Camera image



A model of covert and overt attention
(Fix et al., 2011)
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A model of covert and overt attention
(Fix et al., 2010)

Time

• Feature based attention facilitates processing of relevant features
• Spatial based attention facilitates processing of relevant region
• Working memory prevents to explore already seen location
• Model exhibits both overt and covert attention using same substrate



Towards the organization of visual behavior

From sequential to parallel to sequential

• A bottom-up sequential exploratory behavior has emerged from distributed &
numeric computation.

• The sequential nature of the behavior is provided through the interaction with
the external world.

• We ensured no shortcut is made between the simulation and the behavior.



Part 2
The resilient brain



The Somatosensory System

Donald O. Hebb
• Neurons that fire together wire together

Hubel and Wiesel
• Simple and complex cells (1959)
• Ocular dominance columns (1962)
• Critical period, no plasticity a�er that period (1963-1965)

Merzenich, Kaas and Rasmusson

• Cortical organization of the primary somatosensory cortex (1981)
• Reorganization of the adult primary somatosensory cortex (1983)



The Somatosensory System
(Kandel, 2013)



Plasticity in the Somatosensory System
(Florence, 2002)

Area 3b
Topographic organization of somatosensory
cortical area 3b of owl monkeys a�er dorsal
column transection.
A. Normal somatotopy of the hand

representation
B. Complete dorsal column section at cervical

levels deprives the hand representation of all
activating inputs

C. Over the course of weeks, the influence of the
spared inputs expands



Plasticity in the Somatosensory System

• When, where and how organization occurs in the first place ?
• How representations can be both stable and plastic ?
• How to cope with cortical and/or sensory lesions ?
• Do current computational models give a fair account on cortical plasticity ?
• Are there other mechanisms or structures involved ?
• What is actually represented through cortical activity ?
• What is the role ot the motor-sensory loop ?



Self-Organizing maps
(Kohonen, 1982)

Self-organization...

• Simple 2D topology
• Unsupervised learning
• Density driven

but...
• Decreasing neighborhood & learning rate
• Frozen terminal state
• Winner-takes-all algorithm



Dynamic Self-Organizing maps
Rougier & Boniface (2010)

To what extent it is possible to have both stable and dynamic representations ?

Dynamic
The model must dynamically adapts itself to the data.

Stability
Model representations must be stable if the input is stable.

Topology
Two physically neighborhood cells mut have similar representations.



Dynamic Self-Organizing maps
Rougier & Boniface (2010)



Dynamic Self-Organizing maps
Rougier & Boniface (2010)

Dynamic...

• Simple 2D topology
• Unsupervised learning
• No decreasing parameters

but...
• Winner-takes-all algorithm
• Elasticity tuning



Computational model of area 3b
Detorakis & Rougier (2013)
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Computational model of area 3b
Detorakis & Rougier (2013)

• Neural field promotes competition
• Lateral connections are fixed and

dynamic
• Feed-forwards connections are

plastic
• Learning shapes receptive fields

Cortical Layer

Neuron

wf

Input Layer

Stimulus

Receptor

we(x)

wi(x)



Computational model of area 3b
Detorakis & Rougier (2013)

Competition
Let u(x,t) be the membrane potential at position x and time t, f a transfer function
andw a kernel of lateral interaction. The temporal evolution of u(x,t) is given by:

τ

time constant

·
∂u(x, t)
∂t

= −u(x, t)

leak term

+

∫ +∞

−∞
wl(x, y) · f(u(y, t))

lateral interactions

dy + I(x)

input

+ h

resting potential

Learning
Learning occurs at every time step.

τ

time constant

·
∂wf (x, t)

∂t
= γ

learning rate

(s(z, t)− wf (x, t))

thalamo-cortical

∫ +∞

−∞
we(x, y)

excitatory lateral

f(u(y, t))dy

Usingwl(x, y) = we(x, y)− wi(x, y) = Ke exp
(
−d2
2σ2e

)
− Ki exp

(
−d2
2σ2i

)



Computational model of area 3b
Initial organization

• Model has been trained on 50000
random samples

• Learning occurs at every time step
• Thalamo-cortical connections have

been shaped
• Receptive fields covers uniformly the

skin patch
• Topology is enforced everywhere



Computational model of area 3b
Shaping of (classical) receptive fields

Temporal evolution of a receptive field

The shaping of receptive fields occurs through an early expansion stage followed by a
shrinking and a specialization stage.



Cortical lesion
Reorganization and expansion of receptive fields

• 25% of neurons are killed
• 3 types of lesion

• Reorganization in three phases
• Silence
• Expansion
• Shrinkage

• Expansion to non-represented
skin areas.

• Partial recovery



Sensory deprivation
Reorganization ad shrinking of receptive fields

• 25% of receptors are silenced
• 3 types of lesion

• Reorganization in three phases
• Silence
• Expansion
• Shrinkage

• Migration of receptive fields
• Full recovery



Structure of Receptive Fields...
...in Area 3b of Primary Somatosensory Cortex in the Alert Monkey (DiCarlo et al, 1998)
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Structure of Receptive Fields...
...in Area 3b of Primary Somatosensory Cortex in the Alert Monkey (DiCarlo et al, 1998)



Structure of Receptive Fields...
... on the structure of receptive fields in area 3b (Detorakis & Rougier, 2014)
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Some questions received (hypothetical) answers

X When, where and how organization occurs in the first place ?

X How representations can be both stable and plastic ?

X How to cope with cortical and/or sensory lesions ?

X Do current computational models give a fair account on cortical plasticity ?

� Are there other mechanisms or structures involved ?

� What is actually represented through cortical activity ?

� What is the role ot the motor-sensory loop ?



Motor and Somatosensory homunculus
A missing link

We (in our model) still miss the link between somatosensory and motor homunculus.
You know you’ve been touched but you don’t know where.



Conclusion

From neurons to behavior
• Still many questions to be addressed
• Embodiment is a key concepts
• Mathematics are helpful but unsu�icient

Mathematical solutions do not characterize functional blocks

Filter Decision Tracking Memory



Is there something like an objective behavior ?

Curious (visual tracking) ?

Saliency

Input

Focus

Competition

Camera

We can connect the model to a pan-tilt camera
such that it follows a given stimulus

Shy (visual avoidance) ?

Saliency

Input

Focus

Competition

Camera

We can connect the model to a pan-tilt camera
such that it looks away from a given stimulus

The actual behavior of the model depends on the links to its body. Ultimately, the
modeler is the one who decide on the behavior.



What is a model ?

Supposons qu’un être (ou une situation) extérieur(e) X présente un comportement énigmatique, et
que nous nous posions à son sujet une (ou plusieurs) question(s). Pour répondre à cette question,
on va s’e�orcer demodéliser X, c’est-à-dire, on va construire un objet (réel ou abstrait)M, considéré
comme l’image, l’analogue de X :M sera dit lemodèle de X.

R. Thom,Modélisation et scientificité, 1978

Question (Q')

Question (Q)

Being (X)

Analogy

Model (M)

Answer (A')

Answer (A)

To an observer B, an object A* is a model of an object A to the extent that B can use A* to answer
questions that interest him about A.

M. Minsky,Matter, Mind and Models, 1965



A hierarchy of models

The theoretical model
provides a direct access to the question

The computational model
objective mathematical properties
subjective functional interpretations

The embodied model
behavior through embodiment
quantifiable performances

The cognitive model
observation through interaction
interpretation may depends on our own behavior

MODEL
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A hierarchy of models

The theoretical model
provides a direct access to the question

The computational model
objective mathematical properties
subjective functional interpretations

The embodied model
behavior through embodiment
quantifiable performances

The cognitive model
observation through interaction
interpretation may depends on our own behavior

Brain

Body
SENSORY/MOTOR

World 

MODEL



Where is my mind ?
Toward an embodied and social theory of mind

The Eye of the Beholder
Part of the cognition we lend to others may be rooted in our own cognition.


