Bee-inspired vision-based robots

Franck RUFFIER

CNRS Research Scientist, Co-Head of the Biorobotics Lab.

Institute of Movement Sciences, UMR ISM

CNRS / Aix-Marseille University, France

<u>franck.ruffier@univ-amu.fr</u>

www.ism.univ-amu.fr/ruffier

The Biorobotics scientific method

Motion detection
Target tracking
Sensori-motor control

Inspiration

Fly Hovefly Wasp Bee

Autonomous robots Visual sensors Navigation strategies

Insect compound eyes

Franceschini – J. Physiol. Paris - 2004

Horridge - 1977

Optic flow

Winged insects used the optic flow to navigate : $\,\omega\! \sim\! \frac{V}{D}\, \sin\Phi\,$

Lens/photodiode assembly

Linear array of 6 photodiodes Gaussian angular sensitivities

- Linear on-chip current preamplification circuit

Lens from Sparkfun™

- Focal length 2mm

- f-number 2.8

F. Roubieu et al., IEEE Sensors Journal, 2013

Optic flow processing

Time of travel scheme: 6 processing steps

$$\omega_i^{\rm m} = \frac{\Delta \Phi}{\Delta t_i}$$

Implemented into a tiny 16bits dsPic microcontroller!!

Design of a tiny visual motion sensor

- −> 5 single 1–D angular speed measurements, ω ∈ [25°/s; 350°/s]
- -> 1 fused output : median of the 5 single measurements
- -> Size, mass and power-consumption reduced

F. Roubieu *et al., IEEE Sensors Journal, 2013* 4

Floreano et al. (2013) PNAS

CURVACE (ICT/FET) European project

www.curvace.org

Floreano et al. (2013) PNAS

1st programmable artificial compound eye

630 Delbrück pixels (42x15)

Mass: 2 grams

Field Of View: 180° x 60°

www.curvace.org

CURVACE (ICT/FET) European project

Optic flow measurement

Floreano, Pericet, Viollet, Ruffier et al., PNAS, 2013

3 proof-of-concept robots based on optic flow => accounting for flying insect behaviors

Flying with the wind and Landing on a moving target

Ruffier, Franceschini (2005, 2014)

Position and speed control in narrow corridor

Roubieu et al. (2014) Bioinsp. Biomim.

Stabilize pitch without IMU nor accelerometer

Expert, Ruffier (2015) Beerotor

Ruffier, Franceschini (2005, 2014)

⇒ OCTAVE

3 proof-of-concept robots based on optic flow => accounting for flying insect behaviors

Flying with the wind and Landing on a moving target

Ruffier, Franceschini (2005, 2014)

⇒ OCTAVE

Position and speed control in narrow corridor

Roubieu et al. (2014) Bioinsp. Biomim.

Position and speed control in narrow corridor

Roubieu et al. (2014) Bioinsp. Biomim.

Source of inspiration: Srinivasan et al. 1989,1991,1996

 Bees do not react to the distance from the walls but to the Optic Flow (OF)

Honeybees in a much larger corridor

Serres et al. (2008) Naturwissenschaften, vol. 95(12), pp. 1181-1187

The robot LORA

Roubieu et al. (2014) *Bioinspir. Biomim.*

Optic flow (OF) measurement

Selection of the wall to follow

The side control loop

Speed control loop: Source of inspiration

Observation:

« Bees tend to keep their flight speed proportional to the corridor width »

Conclusion:

« The speed of flight is controlled by regulating the image velocity »

Srinivasan et al. (1996)

LORA III: Forward control loop+Side control loop

set-point

The robot LORA

Roubieu et al. (2014) *Bioinspir. Biomim.*

Roubieu et al. (2014) Bioinspir. Biomim.

Dual optic flow regulation

- Using Optic Flow regulation directly in a control loop that manipulates forces
- + without measuring nor estimating states in any inertial frame of reference

⇒ The LORA robot mimics and accounts for insect behaviors

3 proof-of-concept robots based on optic flow => accounting for flying insect behaviors

Flying with the wind and Landing on a moving target

Ruffier, Franceschini (2005, 2014)

Position and speed control in narrow corridor

Roubieu et al. (2014) Bioinsp. Biomim.

Stabilize pitch without IMU nor accelerometer

a) 1cm

Expert, Ruffier ⇒ Beerotor (2015) B&B Accepted

Stabilize pitch without IMU nor accelerometer

Expert, Ruffier → Beerotor (2015) B&B Accepted

Almost all aircraft use the inertial reference frame

Commercial aircraft, helicopter, quadrirotor, ...

- ⇒use Inertial Measurement Unit,
- \Rightarrow use the absolute vertical,
- ⇒ control their attitude in the inertial reference frame, i.e. with respect to the center of the Earth

In insect, compound eye and ocelli are used as horizon detector:

- ⇒ Pb: Might not be very helpful indoors or under the canopy
- ⇒ But still, insects fly very well indoors or under the canopy

As far as I know, only Dipteria (and Strepsiptera) are endowed with inertial modalities:

- ⇒ Pb: no absolute attitude as their halteres act as rate gyro
- ⇒ Very little evidence that some organ may serve as accelerometer

Beerotor: Flying over uneven moving terrain based on optic-flow cues

3 degrees-of-freedom aerial robot

without using the inertial reference frame or accelerometer

Expert, Ruffier (2015) B&B

1st control law:

To regulate the maximum optic flow (ventral or dorsal)

1st control law:

To regulate the maximum optic flow (ventral or dorsal)

2nd control law:

To regulate the sum of ventral + dorsal optic flow

2nd control law:

To regulate the sum of ventral + dorsal optic flow

A motor decoupling eye rotation from body rotation

=> The idea is to reorient the eye during the flight

Without eye reorientation, the OF depends on the angle between the eye and the slope which causes the crash

Without eye reorientation, the OF depends on the angle between the eye and the slope which causes the crash

3rd control law:

To orient the OF sinus profile toward surface below => by acting upon the eye's pitch

3rd control law:

To orient the OF sinus profile toward surface below => by acting upon the eye's pitch

3rd control law:

To orient the OF sinus profile toward surface below => by acting upon the eye's pitch

