Machine learning applications to genomics

Chloé-Agathe Azencott

L.

Center for Computational Biology (CBIO) Mines ParisTech – Institut Curie – INSERM U900 PSL Research University, Paris, France

BioComp Summer School 2017

http://cazencott.info chloe-agathe.azencott@mines-paristech.fr @cazencott

Adapt treatment to the (genetic) specificities of the patient.

E.g. Trastuzumab for HER2+ breast cancer.

- Adapt treatment to the (genetic) specificities of the patient.
 E.g. Trastuzumab for HER2+ breast cancer.
- Data-driven biology/medicine

Identify similarities between patients that exhibit similar phenotypes.

- Adapt treatment to the (genetic) specificities of the patient.
 E.g. Trastuzumab for HER2+ breast cancer.
- Data-driven biology/medicine

Identify similarities between patients that exhibit similar phenotypes.

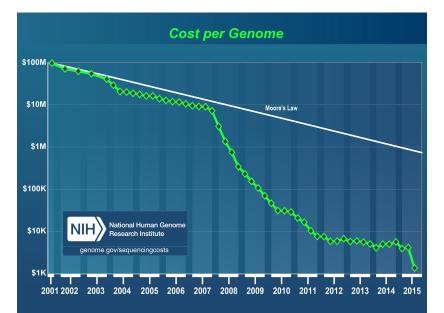
Biomarker discovery = Feature Selection

- Adapt treatment to the (genetic) specificities of the patient.
 E.g. Trastuzumab for HER2+ breast cancer.
- Data-driven biology/medicine

Identify similarities between patients that exhibit similar phenotypes.

- **Biomarker discovery = Feature Selection**
- Prediction

Sequencing costs



Big data!

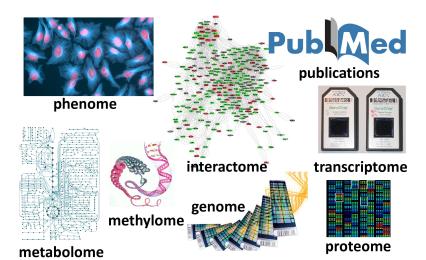


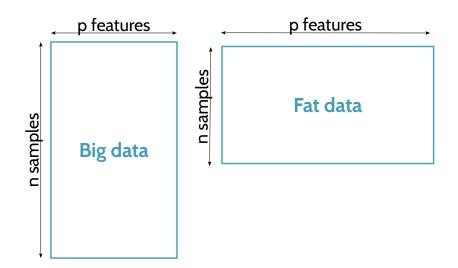
Image sources: ajc1@ flickr; Zlir'a@wikimedia

Big data!

THE CANCER GENOME ATLAS

National Cancer Institute National Human Genome Research Institute

Big data vs. fat data



Challenges of high-dimensional data

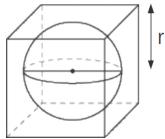
- ► Computational challenges for some algorithms Linear regression: inverting X^TX takes O(p³) computations.
- The curse of dimensionality makes it hard to learn
- Overfitting is more likely
- Ill-posed problems.

The curse of dimensionality

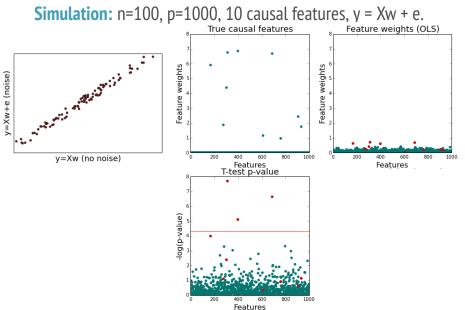
- Methods and intuitions that work in low dimension might not apply to higher dimensions.
- Hyperspace is very big and everything is far apart

Fraction of the points within a cube that fall outside the inscribed circle:

- In two dimensions: $1 \frac{\pi r^2}{4r^2} = 1 \frac{\pi}{4}$
- In three dimensions: $1 \frac{4/3\pi r^3}{8r^3} = 1 \frac{\pi}{6}$
- In higher dimension: tends towards 1.



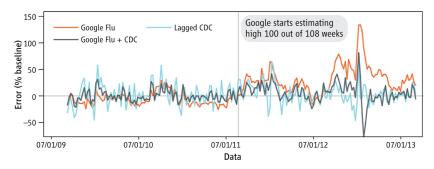
Large p, small n data



Google Flu Trends

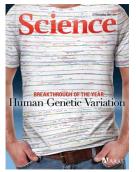
D. Lazer, R. Kennedy, G. King and A. Vespignani. **The Parable of Google Flu: Traps in Big Data Analysis.** Science 2014 [Lazer et al. 2014]

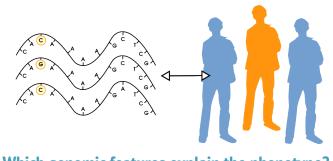
- p = 50 million search terms
- n = 1152 data points



Predictive search terms include terms related to high-school basketball.

GWAS: Genome-Wide Association Studies





Which genomic features explain the phenotype?

 $p = 10^5 - 10^7$ Single Nucleotide Polymorphisms (SNPs) $n = 10^2 - 10^4$ samples

[Pennisi 2007]

Qualitative GWAS

Binary phenotype, i.e. case/controls encoded as 1/0.

Contingency table

	AA	Aa	aa
Cases			
Ctrls			

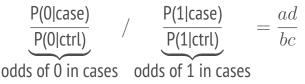
	0	1
Cases	a	b
Ctrls	С	d

Statistical tests: χ^2 , Cochran-Armitage trend test, etc.

Logistic regression

$$\operatorname{logit}(p(y|X)) = \beta_0 + \frac{\beta_1 X}{\beta_1 X}$$

► Odds-ratio



► Linear regression

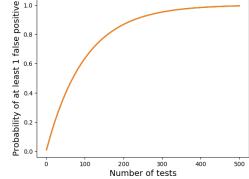
$$y = \beta_0 + \frac{\beta_1 X}{\lambda}$$

- p-value: Is β̂₁ significantly different from 0?
 Wald test: compare β̂₁²/Var(β̂₁) to a χ² distribution.
 Effect size: β.
- Effect size: β_1 .

Multiple Hypothesis Testing

- Probability of having at least one false positive:
 - For one test: α

- For **p** tests:
$$1 - (1 - \alpha)^p$$



Controlling Family-Wise Error Rate (FWER)

 $\begin{array}{l} {\rm FWER} \ = P(|{\rm FP}| \geq 1) \\ {\rm FP} = {\rm number \ of \ false \ positives \ (Type \ I \ errors)} \end{array}$

• **Bonferroni** correction: $\alpha \rightarrow \frac{\alpha}{p}$

GWAS discoveries

- The GWAS Catalog https://www.ebi.ac.uk/gwas/
- Clinical benefits: Ankylosing spondylitis
 - Role of interleukine 17 pathway
 - Consentyx (secukinumab), approved January 15, 2016.
- ► SNPs associated with **drug resistance**

in e.g. *Myobacterium tuberculosis, Staphylococcus aureus, Streptococcus pneumoniae* or HIV.

Ref: [Visscher et al. 2012; Manolio 2013; Power, Parkhill, and Oliveira 2017]

Missing heritability

GWAS **fail to explain** most of the **inheritable variability** of complex traits.

- Many possible reasons:
- non-genetic / non-SNP factors
- heterogeneity of the phenotype
- rare SNPs
- weak effect sizes
- few samples in high dimension ($p \gg n$)
- joint effets of multiple SNPs.

Ref: [Manolio et al. 2009]

What solution does machine learning provide?

Reducing p

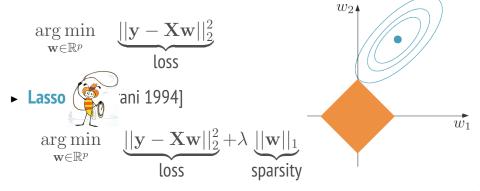
Dimensionality reduction

- ► Feature selection: Keep relevant features only
 - Filter approaches: Apply a statistical test to assign a score to each feature.
 - Wrapper approaches: Use a greedy search to find the "best" set of features for a given predictive model.
 - Embedded approaches: Fit a sparse model, i.e. that is encouraged to not use all the features.
- Feature extraction: Project the data on a new space
 - Creates new features, which makes interpretability harder.
 - Matrice factorization techniques: PCA, factorial analysis, NMF, kPCA.
 - Manifold learning: Multidimensional scaling, t-SNE.
 - Autoencoders.

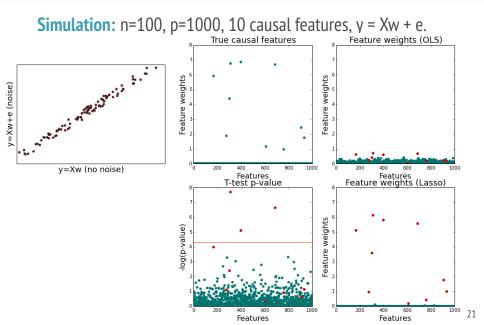
Regularization

Control the number of parameters

- limit model complexity
- avoid overfitting
- Least-squares regression



Large p, small n data



Integrating prior knowledge

Use prior knowledge as a constraint on the selected features

Prior knowledge can be represented as structure:

- Linear structure of DNA
- Groups: e.g. pathways
- Networks (molecular, 3D structure).

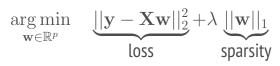
Original feature space

Constrained feature space

Elephant image by Danny Chapman @ Flickr.

Structured sparsity

Lasso: Selecting variables in high dimension.



Lasso+: Structured regularizer.

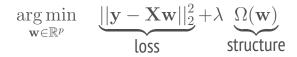


Image by Harold M. Walker via Wikimedia Commons

Structured regularizers

► Group Lasso [Yuan and Lin 2006]

$$\Omega_{\text{group}}(\mathbf{w}) = \sum_{g \in \mathcal{G}} ||\mathbf{w}_g||$$

Overlapping Group Lasso [Jacob, Obozinski, and Vert 2009]

$$\begin{split} \Omega_{\mathsf{overlap}}(\mathbf{w}) &= \sum_{\mathbf{v} \in \mathcal{V}_{\mathcal{G}}, \sum_{g \in \mathcal{G}} \mathbf{v}_g = \mathbf{w}} ||\mathbf{v}_g|| \\ \mathbf{w} &= \sum_{g \in \mathcal{G}} \mathbf{v}_g \text{ and } \operatorname{supp}(\mathbf{v}_g) \subset g. \\ \\ \mathbf{Graph \ Lasso: \ groups = edges.} \end{split}$$

▶ ncLasso / Grace [Li and Li 2008; Li and Li 2010]

$$\Omega_{\mathsf{ncLasso}}(\mathbf{w}) = \mathbf{w}^\top L \mathbf{w}$$

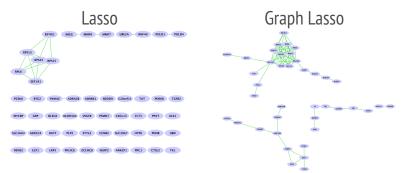
L = D - W: Laplacian of the graph of adjacency matrix W and degree matrix D.

Gene selection with the Graph lasso

icml2009

Group Lasso with Overlaps and Graph Lasso

Laurent Jacob, Guillaume Obozinski and Jean-Philippe Vert



Ref: [Jacob, Obozinski, and Vert 2009]

Regularized relevance

Set ${\mathcal V}$ of p variables.

• Relevance score $R: 2^{\mathcal{V}} \to \mathbb{R}$

Quantifies the importance of any subset of variables for the question under consideration.

Ex : correlation, HSIC, statistical test of association.

• Structured regularizer $\Omega: 2^{\mathcal{V}} \to \mathbb{R}$

Promotes a sparsity pattern that is compatible with the constraint on the feature space.

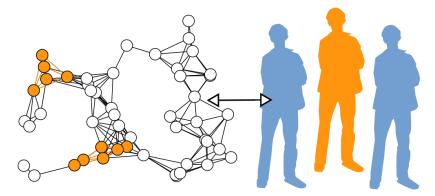
Ex : cardinality $\Omega : \mathcal{S} \mapsto |\mathcal{S}|$.

Regularized relevance

$$\underset{\mathcal{S}\subseteq\mathcal{V}}{\arg\max}\,R(\mathcal{S})-\lambda\Omega(\mathcal{S})$$

Network-guided multi-locus GWAS

Goal: Find a **set of explanatory SNPs** compatible with a **given network** structure.



Network-guided GWAS

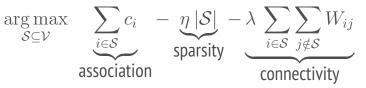
Additive test of association SKAT [Wu, Lee, et al. 2011]

$$R(\mathcal{S}) = \sum_{i \in \mathcal{S}} c_i \qquad c_i = (\mathbf{X}^\top (\mathbf{y} - \mu))_i^2$$

Sparse Laplacian regularization

$$\Omega: \mathcal{S} \mapsto \sum_{i \in \mathcal{S}} \sum_{j \notin \mathcal{S}} W_{ij} + \alpha |\mathcal{S}|$$

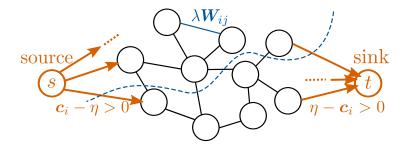
► Regularized maximization of *R*



Minimum cut reformulation

The graph-regularized maximization of score Q(*) is equivalent to a s/t-min-cut for a graph with adjacency matrix \mathbf{A} and two additional nodes s and t, where $\mathbf{A}_{ij} = \lambda \mathbf{W}_{ij}$ for $1 \leq i, j \leq p$ and the weights of the edges adjacent to nodes s and t are defined as

$$\mathbf{A}_{si} = \begin{cases} c_i - \eta & \text{if } c_i > \eta \\ 0 & \text{otherwise} \end{cases} \quad \text{and} \quad \mathbf{A}_{it} = \begin{cases} \eta - c_i & \text{if } c_i < \eta \\ 0 & \text{otherwise} \end{cases}$$



SConES: Selecting Connected Explanatory SNPs.

Comparison partners

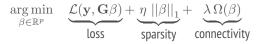
Univariate linear regression

$$y_k = \alpha_0 + \beta \mathbf{G}_k^i$$

► Lasso

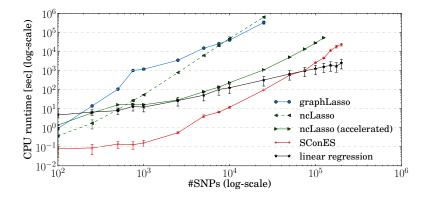
$$\underset{\boldsymbol{\beta} \in \mathbb{R}^{p}}{\operatorname{arg\,min}} \quad \underbrace{\frac{1}{2} ||\mathbf{y} - \mathbf{G}\boldsymbol{\beta}||_{2}^{2}}_{\operatorname{loss}} + \underbrace{\eta ||\boldsymbol{\beta}||_{1}}_{\operatorname{sparsity}}$$

Feature selection with sparsity and connectivity constraints



- ncLasso: network connected Lasso [Li and Li 2008]
- Overlapping group Lasso [Jacob, Obozinski, and Vert 2009]
 - groupLasso: E.g. SNPs near the same gene grouped together
 - graphLasso: 1 edge = 1 group.

Runtime



n = 200 exponential random network (2 % density)

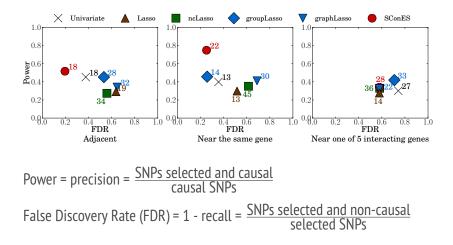
Arabidopsis thaliana genotypes [Atwell et al. 2010; Segura et al. 2012]

- $n=500~\mathrm{samples}, p=1,000~\mathrm{SNPs}$
- TAIR Protein-Protein Interaction data $\rightarrow ~ \sim 50 \times 10^6 {\rm ~edges}$

 $20 \text{ causal SNPs: } y = \omega^\top x + \epsilon$

- Causal SNPs adjacent in the genomic sequence
- Causal SNPs near the same gene
- Causal SNPs near any of 2-5 interacting genes

Performance on simulated data



Experiments: Performance on simulated data

Arabidopsis thaliana genotypes

n=500 samples, p=1 000 SNPs TAIR Protein-Protein Interaction data $\sim 50.10^6$ edges

Higher **power** and lower **FDR** than comparison partners
 except for groupLasso when groups = causal structure

Fairly robust to missing edges

Fails if network is random.

Image source: Jean Weber / INRA via Flickr.

Arabidopsis thaliana flowering time

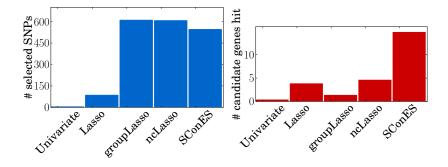
17 flowering time phenotypes [Atwell et al., Nature, 2010]

 $p\sim$ 170 000 SNPs (after MAF filtering) $n\sim$ 150 samples

165 **candidate genes** [Segura et al., Nat Genet 2012]

Correction for population structure: regress out PCs.

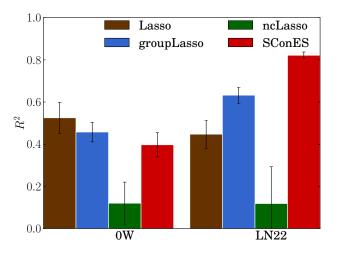
Arabidopsis thaliana flowering time



 SConES selects about as many SNPs as other network-guided approaches but detects more candidates.

Arabidopsis thaliana flowering time

Predictivity of selected SNPs



SConES: Selecting Connected Explanatory SNPs

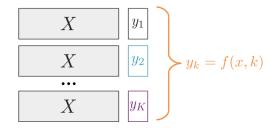
- selects connected, explanatory SNPs;
- incorporates large networks into GWAS;
- is efficient, effective and robust.

C.-A. Azencott, D. Grimm, M. Sugiyama, Y. Kawahara and K. Borgwardt (2013) Efficient network-guided multi-locus association mapping with graph cuts, Bioinformatics 29 (13), i171-i179 doi:10.1093/bioinformatics/btt238 [Azencott et al. 2013] https://github.com/chagaz/scones https://github.com/chagaz/sfan

Increasing n

Multi-phenotype GWAS

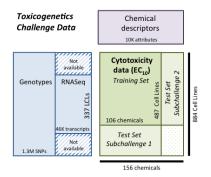
Increase sample size by **jointly** performing GWAS for **multiple related phenotypes**



Multi-task feature selection Transfer learning

Toxicogenetics / Pharmacogenomics

Tasks (phenotypes) = chemical compounds



F. Eduati, L. Mangravite, et al. (2015) **Prediction of human population responses to toxic compounds by a collaborative competition.** Nature Biotechnology, 33 (9), 933–940 doi: 10.1038/nbt.3299

Multi-SConES

${\boldsymbol{T}}$ related phenotypes.

Goal: obtain similar sets of features on related tasks.

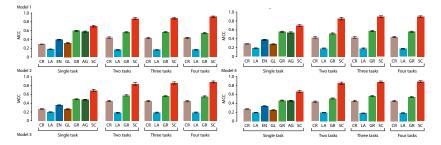
$$\underset{\mathcal{S}_{1},\ldots,\mathcal{S}_{T}\subseteq\mathcal{V}}{\arg\max}\sum_{t=1}^{T}\left(\sum_{i\in\mathcal{S}}c_{i}-\eta\left|\mathcal{S}\right|-\lambda\sum_{i\in\mathcal{S}}\sum_{j\notin\mathcal{S}}W_{ij}-\sum_{u>t}\underbrace{\mu\left|\mathcal{S}_{u}\Delta\mathcal{S}_{t}\right|}_{\mathsf{task sharing}}\right)$$

 $\mathcal{S} \Delta \mathcal{S}' = (\mathcal{S} \cup \mathcal{S}') \setminus (\mathcal{S} \cap \mathcal{S}') \qquad \text{(symmetric difference)}$

Can be reduced to single-task by building a meta-network.

Multi-SConES: Multiple related tasks

Simulations: retrieving causal features



M. Sugiyama, C.-A. Azencott, D. Grimm, Y. Kawahara and K. Borgwardt (2014) **Multi-task** feature selection on multiple networks via maximum flows, SIAM ICDM, 199–207 doi:10.1137/1.9781611973440.23

https://github.com/mahito-sugiyama/Multi-SConES https://github.com/chagaz/sfan

Using task similarity

Use **prior knowledge** about the **relationship** between the tasks: $\Omega \in \mathbb{R}^{T \times T}$

$$\underset{\mathcal{S}_{1},\ldots,\mathcal{S}_{T}\subseteq\mathcal{V}}{\arg\max}\sum_{t=1}^{T} \left(\sum_{i\in\mathcal{S}} c_{i} - \eta \left|\mathcal{S}\right| - \lambda \sum_{i\in\mathcal{S}} \sum_{j\notin\mathcal{S}} W_{ij} - \mu \sum_{u=1}^{T} \sum_{i\in\mathcal{S}_{t}\cap\mathcal{S}_{u}} \Omega_{tu}^{-1} }{\sum_{\mathsf{task sharing}}} \right)$$

Can also be mapped to a meta-network.

Code: http://github.com/chagaz/sfan

Multiplicative Multitask Lasso with Task Descriptors

Multitask Lasso [Obozinski, Taskar, and Jordan 2006]

 $\underset{\boldsymbol{\beta} \in \mathbb{R}^{T \times p}}{\arg\min} \quad \underbrace{\mathcal{L}\left(\boldsymbol{y}_m^t, \sum_{i=1}^p \beta_i \boldsymbol{g}_{mi}^t\right)}_{\text{loss}} + \underbrace{\boldsymbol{\lambda} \sum_{i=1}^p ||\beta_i||_2}_{\text{task sharing}}$

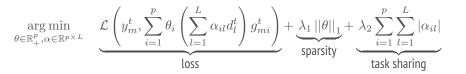
Multilevel Multitask Lasso [Swirszcz and Lozano 2012]

$$\underset{\boldsymbol{\theta} \in \mathbb{R}^{p}_{+}, \boldsymbol{\gamma} \in \mathbb{R}^{T \times p}}{\operatorname{arg\,min}} \quad \underbrace{\mathcal{L}\left(\boldsymbol{y}_{m}^{t}, \sum_{i=1}^{p} \boldsymbol{\theta}_{i} \boldsymbol{\gamma}_{i}^{t} \boldsymbol{g}_{mi}^{t}\right)}_{\operatorname{loss}} + \underbrace{\lambda_{1} \left||\boldsymbol{\theta}|\right|_{1}}_{\operatorname{sparsity}} + \underbrace{\lambda_{2} \sum_{i=1}^{p} \sum_{t=1}^{T} |\boldsymbol{\gamma}_{i}^{t}|}_{\operatorname{task sharing}}$$

 Multiplicative Multitask Lasso with Task Descriptors [Bellon, Stoven, and Azencott 2016]

$$\underset{\theta \in \mathbb{R}^{p}_{+}, \alpha \in \mathbb{R}^{p \times L}}{\operatorname{arg\,min}} \quad \underbrace{\mathcal{L}\left(y_{m}^{t}, \sum_{i=1}^{p} \theta_{i}\left(\sum_{l=1}^{L} \alpha_{il} d_{l}^{t}\right) g_{mi}^{t}\right)}_{\operatorname{loss}} + \underbrace{\lambda_{1} \left|\left|\theta\right|\right|_{1}}_{\operatorname{sparsity}} + \underbrace{\lambda_{2} \sum_{i=1}^{p} \sum_{l=1}^{L} \left|\alpha_{il}\right|}_{\operatorname{task sharing}}$$

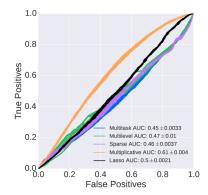
Multiplicative Multitask Lasso with Task Descriptors



- On simulations:
 - Sparser solution
 - Better recovery of true features (higher PPV)
 - Improved stability
 - Better predictivity (RMSE).

Multiplicative Multitask Lasso with Task Descriptors

Making predictions for tasks for which you have no data.



V. Bellón, V. Stoven, and C.-A. Azencott (2016) **Multitask feature selection with task descriptors**, PSB.

https://github.com/vmolina/MultitaskDescriptor

Limitations of current approaches

Robustness/stability

- Doo we recover the same SNPs when the data changes slightly?
- Mixed ℓ_1/ℓ_2 norms: Elastic Net [Zou and Hastie 2005].

Complex interaction patterns

- Limited to additive or quadrative effects (limited power) [Niel et al. 2015]
- A few papers on "higher-order epistasis".
- Statistical significance
 - How do we compute p-values?
 - How do we correct for multiple hypotheses?

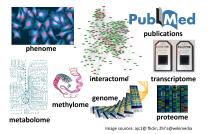
Privacy

- More data \rightarrow Data sharing \rightarrow **ethical** concerns
- ► How to learn from **privacy-protected** patient data?

S. Simmons and B. Berger (2016) **Realizing privacy preserving genome-wide association studies**, Bioinformatics 32 (9), 1293–1300

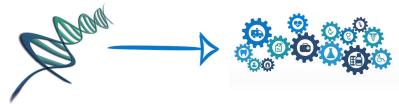
Heterogeneity

- Multiple relevant data sources and types
- Multiple (unknown) populations of samples.



Tumor heterogeneity L. Gay et al. (2016), F1000Research

Heterogeneous data sources



Risk prediction

• State of the art: Polygenic Risk Scores

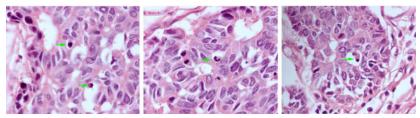
Linear combination of SNPs with high p-values (summary statistics) Weighted by log odd ratios / univariate linear regression coefficients.

More complex models slow to be adopted – reliability?

Interpretability

Bioimage informatics

- High-throughput molecular and cellular images
- Biolmage Informatics http://bioimageinformatics.org/



Detecting cells undergoing apoptosis

Electronic health records

- Clinical notes: incomplete, imbalanced, time series
- Combine text + images + genetics
- Assisting evidence-based medicine

R. Miotto et al. (2016) **Deep Patient: An Unsupervised Representation to Predict the Future of Patients from the Electronic Health Records** Scientific Reports 6.

https://github.com/chagaz/

CBIO: Víctor Bellón, Yunlong Jiao, **Véronique Stoven**, Athénaïs Vaginay, Nelle Varoquaux, Jean-Philippe Vert, Thomas Walter.

MLCB Tübingen: Karsten Borgwardt, Aasa Feragen, **Dominik Grimm**, Theofanis Karaletsos, Niklas Kasenburg, Christoph Lippert, Barbara Rakitsch, Damian Roqueiro, Nino Shervashidze, Oliver Stegle, **Mahito Sugiyama**.

SOURCE: http://www.flickr.com/photos/wwworks/

References I

Atwell, S. et al. (2010). "Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines". In: Nature 465.7298, pp. 627–631. ISSN: 0028-0836. DOI: 10.1038/nature08800.

Azencott, Chloé-Agathe et al. (2013). "Efficient network-guided multi-locus association

mapping with graph cuts". In: Bioinformatics 29.13, pp. i171–i179. Bellon, Victor, VAlronique Stoven, and ChloAl'-Agathe Azencott (2016). "Multitask feature selection with task descriptors". In: Pacific Symposium on Biocomputing. Vol. 21, pp. 261-272.

Jacob, L., G. Obozinski, and J.-P. Vert (2009). "Group lasso with overlap and graph lasso". In: ICML. pp. 433-440.

Lazer, David et al. (2014). "The parable of Google Flu: traps in big data analysis". In: Science 343.6176, pp. 1203-1205.

Li, C. and H. Li (2008). "Network-constrained regularization and variable selection for analysis of genomic data". In: Bioinformatics 24.9, pp. 1175–1182.

References II

- Li, Caiyan and Hongzhe Li (2010). "Variable selection and regression analysis for graph-structured covariates with an application to genomics". In: The annals of applied statistics 4.3, pp. 1498–1516.

Manolio, Teri A (2013). "Bringing genome-wide association findings into clinical use". In: Nature Reviews Genetics 14.8, pp. 549–558.

Manolio, Teri A. et al. (2009). "Finding the missing heritability of complex diseases". In: Nature 461.7265, pp. 747–753.

Niel, Clément et al. (2015). "A survey about methods dedicated to epistasis detection". In: Bioinformatics and Computational Biology, p. 285.

Obozinski, Guillaume, Ben Taskar, and Michael I. Jordan (2006). Multi-task feature selection. Tech. rep. UC Berkeley.

Pennisi, Elizabeth (2007). "Human Genetic Variation". In: Science 318.5858, pp. 1842–1843.

Power, Robert A., Julian Parkhill, and Tulio de Oliveira (2017). "Microbial genome-wide association studies: lessons from human GWAS". In: Nature Reviews Genetics 18.1, pp. 41–50.

References III

Segura, V. et al. (2012). "An efficient multi-locus mixed-model approach for genome-wide association studies in structured populations". In: Nat Genet 44.7, pp. 825–830.

Swirszcz, Grzegorz and Aurelie C. Lozano (2012). "Multi-level Lasso for Sparse Multi-task Regression". In: Proceedings of the 29th International Conference on Machine Learning (ICML-12), pp. 361–368.

Tibshirani, Robert (1994). "Regression shrinkage and selection via the lasso". In: J. R. Stat. Soc. 58, pp. 267–288.

Visscher, Peter M. et al. (2012). "Five years of GWAS discovery". In: Am. J. Hum. Genet. 90.1, pp. 7–24.

Wu, M. C., S. Lee, et al. (2011). "Rare-Variant Association Testing for Sequencing Data with the Sequence Kernel Association Test". In: AJHG 89.1, pp. 82–93.

Yuan, Ming and Yi Lin (2006). "Model selection and estimation in regression with grouped variables". In: Journal of the Royal Statistical Society: Series B (Statistical Methodology) 68.1, pp. 49–67.

Zou, Hui and Trevor Hastie (2005). "Regularization and variable selection via the elastic net". In: Journal of the Royal Statistical Society: Series B (Statistical Methodology) 67.2, pp. 301–320.