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Precision Medicine
I Adapt treatment to the (genetic) specificities of the patient.
E.g. Trastuzumab for HER2+ breast cancer.

I Data-driven biology/medicine
Identify similarities between patients that exhibit similar phenotypes.

I Biomarker discovery = Feature Selection
I Prediction
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Sequencing costs
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Big data!
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Big data vs. fat data
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Challenges of high-dimensional data

I Computational challenges for some algorithms
Linear regression: invertingX>X takesO(p3) computations.

I The curse of dimensionality makes it hard to learn
I Overfitting is more likely
I Ill-posed problems.
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The curse of dimensionality

I Methods and intuitions that work in low dimension might not
apply to higher dimensions.

I Hyperspace is very big and everything is far apart
Fraction of the points within a cube that fall outside the inscribed circle:

– In two dimensions: 1− πr2

4r2
= 1− π

4

– In three dimensions: 1− 4/3πr3

8r3
= 1− π

6

– In higher dimension: tends towards 1.
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Large p, small n data
Simulation: n=100, p=1000, 10 causal features, y = Xw + e.
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Google Flu Trends
D. Lazer, R. Kennedy, G. King and A. Vespignani. The Parable of Google Flu: Traps in Big
Data Analysis. Science 2014 [Lazer et al. 2014]

I p = 50 million search terms
I n = 1152 data points

I Predictive search terms include terms related to high-school basketball.
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GWAS: Genome-Wide Association Studies

Which genomic features explain the phenotype?

p = 105 – 107 Single Nucleotide Polymorphisms (SNPs)
n = 102 – 104 samples

[Pennisi 2007]
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Qualitative GWAS
Binary phenotype, i.e. case/controls encoded as 1/0.

I Contingency table
AA Aa aa

Cases

Ctrls

0 1

Cases a b

Ctrls c d

Statistical tests: χ2, Cochran-Armitage trend test, etc.
I Logistic regression

logit(p(y|X)) = β0 + β1X

I Odds-ratio
P(0|case)
P(0|ctrl)︸ ︷︷ ︸

odds of 0 in cases

/
P(1|case)
P(1|ctrl)︸ ︷︷ ︸

odds of 1 in cases

=
ad

bc
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Quantitative GWAS

I Linear regression

y = β0 + β1X

I p-value: Is β̂1 significantly different from 0?

Wald test: compare β̂2
1

Var(β̂1)
to a χ2 distribution.

I Effect size: β1.
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Multiple Hypothesis Testing

I Probability of having at least one false positive:
– For one test: α
– For p tests: 1− (1− α)p

I Controlling Family-Wise Error Rate (FWER)
FWER = P (|FP| ≥ 1)
FP = number of false positives (Type I errors)

I Bonferroni correction: α→ α
p 14
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GWAS discoveries
I The GWAS Catalog https://www.ebi.ac.uk/gwas/

I Clinical benefits: Ankylosing spondylitis
– Role of interleukine 17 pathway
– Consentyx (secukinumab), approved January 15, 2016.

I SNPs associated with drug resistance
in e.g. Myobacterium tuberculosis, Staphylococcus aureus,
Streptococcus pneumoniae or HIV.

Ref: [Visscher et al. 2012; Manolio 2013; Power, Parkhill, and Oliveira 2017]
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Missing heritability

GWAS fail to explain most of the inheritable variability of
complex traits.

Many possible reasons:
– non-genetic / non-SNP factors
– heterogeneity of the phenotype
– rare SNPs
– weak effect sizes
– few samples in high dimension (p� n)
– joint effets of multiple SNPs.

Ref: [Manolio et al. 2009]
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What solution does
machine learning

provide? ???
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Reducing p
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Dimensionality reduction

I Feature selection: Keep relevant features only
– Filter approaches: Apply a statistical test to assign a score to each
feature.

– Wrapper approaches: Use a greedy search to find the “best” set of
features for a given predictive model.

– Embedded approaches: Fit a sparse model, i.e. that is encouraged to
not use all the features.

I Feature extraction: Project the data on a new space
– Creates new features, which makes interpretability harder.
– Matrice factorization techniques: PCA, factorial analysis, NMF, kPCA.
– Manifold learning: Multidimensional scaling, t-SNE.
– Autoencoders.
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Regularization

Control the number of parameters
I limit model complexity
I avoid overfitting

I Least-squares regression

arg min
w∈Rp

||y −Xw||22︸ ︷︷ ︸
loss

I Lasso [Tibshirani 1994]

arg min
w∈Rp

||y −Xw||22︸ ︷︷ ︸
loss

+λ ||w||1︸ ︷︷ ︸
sparsity

Image credits: Harold M. Walker via Wikimedia Commons 20
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Large p, small n data
Simulation: n=100, p=1000, 10 causal features, y = Xw + e.
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Integrating prior knowledge

Use prior knowledge as a constraint on the selected features

Prior knowledge can be represented as structure:
– Linear structure of DNA
– Groups: e.g. pathways
– Networks (molecular, 3D structure).

Elephant image by Danny Chapman @ Flickr.
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Structured sparsity
I Lasso: Selecting variables in high dimension.

arg min
w∈Rp

||y −Xw||22︸ ︷︷ ︸
loss

+λ ||w||1︸ ︷︷ ︸
sparsity

I Lasso+: Structured regularizer.

arg min
w∈Rp

||y −Xw||22︸ ︷︷ ︸
loss

+λ Ω(w)︸ ︷︷ ︸
structure

Image by Harold M. Walker via Wikimedia Commons
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Structured regularizers
I Group Lasso [Yuan and Lin 2006]

Ωgroup(w) =
∑
g∈G

||wg||

I Overlapping Group Lasso [Jacob, Obozinski, and Vert 2009]
Ωoverlap(w) =

∑
v∈VG ,

∑
g∈G vg=w

||vg||

w =
∑

g∈G vg and supp(vg) ⊂ g.
Graph Lasso: groups = edges.

I ncLasso / Grace [Li and Li 2008; Li and Li 2010]
ΩncLasso(w) = w>Lw

L = D −W : Laplacian of the graph of adjacency matrixW and
degree matrixD.
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Gene selection with the Graph lasso

Lasso Graph Lasso

Ref: [Jacob, Obozinski, and Vert 2009]
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Regularized relevance
Set V of p variables.

I Relevance scoreR : 2V → R
Quantifies the importance of any subset of variables for the question
under consideration.
Ex : correlation, HSIC, statistical test of association.

I Structured regularizerΩ : 2V → R
Promotes a sparsity pattern that is compatible with the constraint on the
feature space.
Ex : cardinality Ω : S 7→ |S|.

I Regularized relevance
arg max
S⊆V

R(S)− λΩ(S)
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Network-guided multi-locus GWAS

Goal: Find a set of explanatory SNPs compatible with a given
network structure.
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Network-guided GWAS
I Additive test of association SKAT [Wu, Lee, et al. 2011]

R(S) =
∑
i∈S

ci ci = (X>(y − µ))2
i

I Sparse Laplacian regularization

Ω : S 7→
∑
i∈S

∑
j /∈S

Wij + α|S|

I Regularized maximization ofR

arg max
S⊆V

∑
i∈S

ci︸ ︷︷ ︸
association

− η |S|︸︷︷︸
sparsity

−λ
∑
i∈S

∑
j /∈S

Wij︸ ︷︷ ︸
connectivity
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Minimum cut reformulation
The graph-regularized maximization of scoreQ(∗) is equivalent to a s/t-min-cut for a
graph with adjacency matrixA and two additional nodes s and t, whereAij = λWij

for 1 ≤ i, j ≤ p and the weights of the edges adjacent to nodes s and t are defined as

Asi =

{
ci − η if ci > η

0 otherwise and Ait =

{
η − ci if ci < η

0 otherwise .

SConES: Selecting Connected Explanatory SNPs.
29
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Comparison partners
I Univariate linear regression yk = α0 + βGi

k

I Lasso
arg min
β∈Rp

1

2
||y −Gβ||22︸ ︷︷ ︸
loss

+ η ||β||1︸ ︷︷ ︸
sparsity

I Feature selection with sparsity and connectivity constraints
arg min
β∈Rp

L(y,Gβ)︸ ︷︷ ︸
loss

+ η ||β||1︸ ︷︷ ︸
sparsity

+ λΩ(β)︸ ︷︷ ︸
connectivity

– ncLasso: network connected Lasso [Li and Li 2008]
– Overlapping group Lasso [Jacob, Obozinski, and Vert 2009]
– groupLasso: E.g. SNPs near the same gene grouped together
– graphLasso: 1 edge = 1 group.
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Runtime
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Data simulation

Arabidopsis thaliana genotypes
[Atwell et al. 2010; Segura et al. 2012]

n = 500 samples, p = 1, 000 SNPs

TAIR Protein-Protein Interaction data
→ ∼ 50× 106 edges

20 causal SNPs: y = ω>x+ ε
I Causal SNPs adjacent in the genomic sequence
I Causal SNPs near the same gene
I Causal SNPs near any of 2–5 interacting genes
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Performance on simulated data
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Univariate Lasso ncLasso groupLasso graphLasso SConES

Power = precision = SNPs selected and causalcausal SNPs

False Discovery Rate (FDR) = 1 - recall = SNPs selected and non-causalselected SNPs
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Experiments: Performance on simulated data
I Arabidopsis thaliana genotypes

n=500 samples, p=1 000 SNPs
TAIR Protein-Protein Interaction data∼ 50.106 edges

I Higher power and lower FDR than comparison partners

except for groupLasso when groups = causal structure

I Fairly robust to missing edges
I Fails if network is random.

Image source: Jean Weber / INRA via Flickr.
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Arabidopsis thaliana flowering time

17 flowering time phenotypes
[Atwell et al., Nature, 2010]

p ∼ 170 000 SNPs
(after MAF filtering)
n ∼ 150 samples

165 candidate genes
[Segura et al., Nat Genet 2012]

Correction for population structure: regress out PCs.

Image credits: Dymek & Smith 10.1242/jcs.096941
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Arabidopsis thaliana flowering time
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I SConES selects about as many SNPs as other network-guided
approaches but detects more candidates.
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Arabidopsis thaliana flowering time

Predictivity of selected SNPs
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SConES: Selecting Connected Explanatory SNPs
I selects connected, explanatory SNPs;

I incorporates large networks into GWAS;

I is efficient, effective and robust.

C.-A. Azencott, D. Grimm, M. Sugiyama, Y. Kawahara and K. Borgwardt (2013) Efficient
network-guided multi-locus association mapping with graph cuts, Bioinformatics 29
(13), i171–i179 doi:10.1093/bioinformatics/btt238 [Azencott et al. 2013]
https://github.com/chagaz/scones

https://github.com/chagaz/sfan
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Increasing n
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Multi-phenotype GWAS

Increase sample size by jointly performing GWAS for multiple
related phenotypes

Multi-task feature selection
Transfer learning
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Toxicogenetics / Pharmacogenomics

Tasks (phenotypes) = chemical compounds

F. Eduati, L. Mangravite, et al. (2015) Prediction of human population responses to toxic
compounds by a collaborative competition. Nature Biotechnology, 33 (9), 933–940 doi:
10.1038/nbt.3299
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Multi-SConES
T related phenotypes.

I Goal: obtain similar sets of features on related tasks.

arg max
S1,...,ST⊆V

T∑
t=1

∑
i∈S

ci − η |S| − λ
∑
i∈S

∑
j /∈S

Wij −
∑
u>t

µ |Su ∆ St|︸ ︷︷ ︸
task sharing


S ∆ S ′ = (S ∪ S ′) \ (S ∩ S ′) (symmetric difference)

I Can be reduced to single-task by building a meta-network.
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Multi-SConES: Multiple related tasks
Simulations: retrieving causal features
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M. Sugiyama, C.-A. Azencott, D. Grimm, Y. Kawahara and K. Borgwardt (2014) Multi-task
feature selection on multiple networks via maximum flows, SIAM ICDM, 199–207
doi:10.1137/1.9781611973440.23
https://github.com/mahito-sugiyama/Multi-SConES

https://github.com/chagaz/sfan
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Using task similarity

Use prior knowledge about the relationship between the
tasks: Ω ∈ RT×T

arg max
S1,...,ST⊆V

T∑
t=1


∑
i∈S

ci − η |S| − λ
∑
i∈S

∑
j /∈S

Wij − µ
T∑
u=1

∑
i∈St∩Su

Ω−1tu︸ ︷︷ ︸
task sharing



Can also be mapped to a meta-network.

Code: http://github.com/chagaz/sfan
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Multiplicative Multitask Lasso with Task Descriptors
I Multitask Lasso [Obozinski, Taskar, and Jordan 2006]

argmin
β∈RT×p

L
(
ytm,

p∑
i=1

βig
t
mi

)
︸ ︷︷ ︸

loss

+ λ

p∑
i=1

||βi||2︸ ︷︷ ︸
task sharing

I Multilevel Multitask Lasso [Swirszcz and Lozano 2012]

argmin
θ∈Rp

+,γ∈RT×p

L
(
ytm,

p∑
i=1

θiγ
t
ig
t
mi

)
︸ ︷︷ ︸

loss

+ λ1 ||θ||1︸ ︷︷ ︸
sparsity

+ λ2

p∑
i=1

T∑
t=1

|γti |︸ ︷︷ ︸
task sharing

I Multiplicative Multitask Lasso with Task Descriptors [Bellon, Stoven, and
Azencott 2016]

argmin
θ∈Rp

+,α∈Rp×L

L
(
ytm,

p∑
i=1

θi

(
L∑
l=1

αild
t
l

)
gtmi

)
︸ ︷︷ ︸

loss

+ λ1 ||θ||1︸ ︷︷ ︸
sparsity

+ λ2

p∑
i=1

L∑
l=1

|αil|︸ ︷︷ ︸
task sharing
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Multiplicative Multitask Lasso with Task Descriptors

arg min
θ∈Rp

+,α∈Rp×L

L
(
ytm,

p∑
i=1

θi

(
L∑
l=1

αild
t
l

)
gtmi

)
︸ ︷︷ ︸

loss

+ λ1 ||θ||1︸ ︷︷ ︸
sparsity

+ λ2

p∑
i=1

L∑
l=1

|αil|︸ ︷︷ ︸
task sharing

I On simulations:
– Sparser solution
– Better recovery of true features (higher PPV)
– Improved stability
– Better predictivity (RMSE).
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Multiplicative Multitask Lasso with Task Descriptors

I Making predictions for tasks for which you have no data.

V. Bellón, V. Stoven, and C.-A. Azencott (2016) Multitask feature selection with task
descriptors, PSB.
https://github.com/vmolina/MultitaskDescriptor

47

https://github.com/vmolina/MultitaskDescriptor


References

Limitations of current approaches

I Robustness/stability
– Doo we recover the same SNPs when the data changes slightly?
– Mixed `1/`2 norms: Elastic Net [Zou and Hastie 2005].

I Complex interaction patterns
– Limited to additive or quadrative effects (limited power)
[Niel et al. 2015]

– A few papers on “higher-order epistasis”.

I Statistical significance
– How do we compute p-values?
– How do we correct for multiple hypotheses?
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Further challenges

Privacy
I More data→ Data sharing→ ethical concerns

I How to learn from privacy-protected patient data?
S. Simmons and B. Berger (2016) Realizing privacy preserving genome-wide
association studies, Bioinformatics 32 (9), 1293–1300
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Further challenges

Heterogeneity
I Multiple relevant data sources and types

I Multiple (unknown) populations of samples.

Tumor heterogeneity Heterogeneous data sources

L. Gay et al. (2016), F1000Research
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Further challenges

Risk prediction
I State of the art: Polygenic Risk Scores

Linear combination of SNPs with high p-values (summary statistics)
Weighted by log odd ratios / univariate linear regression coefficients.

I More complex models slow to be adopted – reliability?
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Further challenges

Bioimage informatics
High-throughput molecular and cellular images

BioImage Informatics http://bioimageinformatics.org/

Detecting cells undergoing apoptosis
52
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Further challenges

Electronic health records
I Clinical notes: incomplete, imbalanced, time series

I Combine text + images + genetics

I Assisting evidence-based medicine

R. Miotto et al. (2016) Deep Patient: An Unsupervised Representation to Predict the
Future of Patients from the Electronic Health Records Scientific Reports 6.

53



References

https://github.com/chagaz/

source: http://www.flickr.com/photos/wwworks/

CBIO: Víctor Bellón, Yunlong Jiao, Véronique Stoven, Athénaïs Vaginay,
Nelle Varoquaux, Jean-Philippe Vert, Thomas Walter.
MLCB Tübingen: Karsten Borgwardt, Aasa Feragen, Dominik Grimm, Theofanis
Karaletsos, Niklas Kasenburg, Christoph Lippert, Barbara Rakitsch, Damian Roqueiro,
Nino Shervashidze, Oliver Stegle, Mahito Sugiyama.
MPI for Intelligent Systems: Lawrence Cayton, Bernhard Schölkopf.
MPI for Developmental Biology: Detlef Weigel.
MPI for Psychiatry: André Altmann, Tony Kam-Thong,
Bertram Müller-Myhsok, Benno Pütz.
Osaka University: Yoshinobu Kawahara.
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