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Overview

What kind of problems can machine learning
solve?

Some popular supervised ML algorithms:

- Linear models

- Support vector machines

- Random forests

- (Deep) neural networks.

How do we select a machine learning algorithm?

What is overfitting, and how can we avoid it?



What is (Machine) Learning?



Why Learn?

* Learning:
Modifying a behavior based on experience
(F. Benureau)
 Machine learning: Programming computers 1o

- model data
- by means of optimizing an objective function
- using example data.



Why Learn?

* There is no need o “learn” to calculate payroll.

e Learning is used when

- Human expertise does not exist (bioinformatics);

- Humans are unable to explain their expertise
(speech recognition, computer vision);

- Solutions change in time (routing computer
networks);

- Solutions need adapting to new cases (user
biometrics).



What about Al?
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Artificial Intelligence

ML is a subfield of Arificial Intelligence

- A system that lives in a changing environment must
have the ability to learn in order to adapt.

- ML algorithms are building blocks that make computers
behave more infelligently by generalizing rather than

merely storing and refrieving dafta (like a database
system would do).



200 of ML Problems



Unsupervised learning

Learn a new representation of the data

—

D=A{x1,29,...,2n}

Images, text, «

measurements, I 1

omics data... c X
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Clustering

Group similar dafta points fogether

ML algo

D:{lel,ibz,...,xn} Q O

- Understand general characteristics of the datfq;

- Infer some properties of an object based on

how it relates to ofther objects. .



Clustering: applications

- Customer relationship management: Customer
segmentation

- Image compression: Color guantization

- Document clustering: Group documents by
topics (bag-of-words)

- Bioinformatics: Learning motfifs.
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Dimensionality reduction

Find a lower-dimensional representation

Data ) Datg
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Dimensionality reduction

Find a lower-dimensional representation

Data ‘ ML algo - Data

_ m
r; € RP z; € R

m < p
D=A{x1,29,...,2n}

- Reduce storage space & computational time
- Remove redundances
- Visualization (in 2 or 3 dimensions) and interpretability. y



Supervised learning

Make predictions

Predictor

() =~y

decision function

ML algo ‘
D= {w1,22,...,Tn} ‘ Labels ‘
e {yr, 02, un}

- X +Cy

v v—
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Classification

Make discrete predictions

ML algo | s | Predictor
" flz) =y

‘ Labels ‘ Binary classification
{ylawa--ayn} Yi E{Ovl}

Multi-class classification
Y; € {0,1,...,/€}
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Classification

gene 2
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Classification: Applications

Face recognition: independently of pose, lighting,
occlusion (glasses, beard), make-up, hair style.

Character recognition: independently of different
handwriting styles.

Speech recognition: account for temporal
dependency.

Medical diagnosis: from symptoms to illnesses.

Precision medicine: from clinical & genetic featfures to
diagnosis, prognosis, response to freatment.

Biometrics: recognition/authentication using physical or
behavioral characteristics: Face, iris, signature...
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Regression

Make continunous predictions

D=A{x1,22,...,2n}

ML algo

1

‘ Labels ‘

—

{y17y27 R 7yn}

Predictor

f(x) =~y

y; € R
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Regression: Applications

- Car navigation: angle of
steering

- Kinematics of a robot arm

- Binding dffinities between
molecules

- Age of onset of a disease

- Solubility of a chemical in
warter

- Yield of a crop
- Direction of a forest fire
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Paramelric models

Decision function has a sef form

Model complexity = number of parameters

[ (@) =@z +@ (2122 P+ @log(ws)

Non-parametric models

Decision function can have “arbitrary” form

Model complexity grows with the number of

samples. .
flz) =+ > wi

i:x; ENK ()
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Linear models
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Linear regression

T < ]Rp,y c R D = {ai‘i, yi}izl,...,n
YA

"

« Least-squares fit: B = argmin || X8 — y|>

« Equivalent to maximizing the likelihood p(D|3)
under the assumption of Gaussian noise

- Exact solution B=(X'X)"'XTy

If X has full column rank 03



Classification: logistic regression

e ©
®
® O o
o
® oo ©
o
[ ]
® ®
o o
o o
)

logit(p(y = 1]z)) =
» Solve by maximizing the likelihood 7=

 No analyfical solution

* Use gradient descent.

| Logit(p) = log <—

p
l1—p

)

)

Linear function = probabillity
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Support Vector Machines
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* Find The separating hyperplane with the largest

Large margin classifier

margin.

arg min
w,b

Sllwl* - C

inverse of

Z max(0, 1 — y|({w, z*) + b))

f(x)

the margin

prediction error
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When lines are not enough
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When lines are not enough
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When lines are not enough

2+ 25— R =0 O(x) + P(z)y — R? =

* Non-linear mapping to a feature space
e https://www.youtube.com/watch?v=311iCbRZPrzA29



The kernel trick
* The solution & SVM-solving algorithm can be
expressed using only k(x,z") = (®(x), P(x'))
« Never need to explicitly compute ®(x)
* k: kernel
- must be positive semi-definite
- can be inferpreted as a similarity function.

f@)=> ojy'k(z' x)+ b

1=1

* Support vectors: fraining points for which a = 0.
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Random Forests
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Decision trees

(Color? ]
Creen ow
[ Size? ] [Shape?]

Smff(\a@ CMI

[Grape] [Apple] [Banana] [Apple]

Well suited to categorical features
Naturally handle mulfi-class classification
Interpretable

Perform poorly.
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Ensemble learning

Combining weak learners averages out their individuadl
errors (wisdom of crowds)

Final prediction:
- Classification: majority vote
- Regression: average.

Bagging: weak learners are trained on bootstraped
samples of the data (Breiman, 1996).

booftstrap: sample n, with replacement.

Boosling: weak learners are built iteratively, based on
performance (Shapire, 1990).
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Random forests

« Combine many decision trees

e

N

 Each tree is frained on a data set created using

>

e

\

4 N

\_ /L

v

Majority vote ]<

- A bootstrap sample (sample with replacement) of the data

- A random sample of the features.

* Very powerful in practice.
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(Deep) Neural Networks
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(Deep) neural networks

%\f(w)
Q\ @ hidden layer
20 — 1
whj
whl

2 Zh = -

1_|_6—'wh:13
o =1 xl

’UZ

Uh
Vo - T
Zh—l 1+€—whm

 Nothing more than a (possibly complicated)
parametric model
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(Deep) neurdal networks

flx) = v'z
= Vo T thl H;}L};m
Q\" " hidden layer
1
’UJh “h = —w, x
/ whl J 14+ e %n

To =1 xl
* Fitting weights:
- Non-convex optimization problem
- Solved with gradient descent

- | Can be difficult to tune. 37




(Deep) neurdal networks

hidden layer
1
’UJh “h = —w, x
/ whl J 1+e %n

33()—]. 5131

 Learn an internal representqtion of the data on
which a linear model works well.

e Currently one of the most powerful supervised
learning algorithmsifor large fraining setfs.
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(Deep) neural networks
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Generalization & overfitting
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Generalization

* Godal: build models that make good predictions
on new data.

 Models that work “too well” on the data we learn
on fend to model noise as well as the underlying
phenomenon: overfitting.
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Overfitting (Classification)

Figure from Hastie, Tibshirani & Friedman, The Elements of Statistical Learning. 42



Overfitting (Regression)

- Oveifitting

Undefrfitting

Figure from Hastie, Tibshirani & Friedman, The Elements of Statistical Learning. 43



Model complexity

Simple models are

- more plausible (Occam’s Razor)
— eaqsier to frain, use, and inferpret.

A

On new data

Prediction error

On fraining data

Model complexity
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Regularization

* Prevent overfitting by designing an objective
funcfion that accounts not only for the prediction

error but also for model complexity.

min (empirical_error + A*model complexity)

e Rember the SVM

1 " | .
argmin | [ {|w|[* [+ O;maxm, 1 —y|(w, 2") + b)))
inverse of f(x)

the margin prediction error



Ridge regression

ridge = argminlly — XBIE D181

prediction error regularizer

~
» Unique solution, always exists hyperparameter

lgrldge (X'X+A)"' Xy
» Grouped selection:
Correlated variables get similar weights.
» Shrinkage

Coefficients shrink fowards O.
46



Geometry of ridge regression

Ba

unconstrained
minimum

>

B

feasible region

18]15 <t
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Model selection &
evdaluation
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Evaluation on held-out data

e |f we evaluate the model on the data we’ve used to
train it, we risk over-estimating performance.

* Proper procedure:

- Separate the data in frain/test sets

49



Evaluation on held-out data

* Proper procedure:

- Separate the data in frain/test sets

50



Evaluation on held-out data

Train Test |

* Proper procedure:

- Separate the data in frain/test sets

- Use a cross-validation on the frain set to find the
best algorithm + hyperparameter(s)

Train Val
Train Val

val

Val Train

CvV
core

g88an

Train

<
Q

91




Evaluation on held-out data

* Proper procedure:

Separate the data in frain/test sets

Use a cross-validation on the train set to find the
best algorithm + hyperparameter(s)

Train this best algorithm + hyperparameter(s) on
the entire train set

The performance on the fest set estimates
generalization performance.
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ML Toolboxes

 Python: scikit-learn

http://scikit-1learn.org .

Geft startfed in python: http://scipy-lectures.github.io/

* R: Machine Learning Task View

http://cran.r-project.org/web/views/MachinelLearning.html

* Matlab™: Machine Learning with MATLAB

http://mathworks.com/machine-learning/index.html

- Statistics and Machine Learning Toollbox
- Neural Network Toolbox
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Summary

Machine learning =
data + model + objective function

» Catalog:
- Supervised vs unsupervised
- Parametric vs non-parametric

- Linear models, SVMs, random forests, neuradl
networks.

 Key concerns:

- avoid overfitting
- Measure generalization perforrmance.
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