BioComp Summer School 2017

Introduction to Machine Learning

Chloé-Agathe Azencott

Centre for Computational Biology, Mines ParisTech chloe-agathe.azencott@mines-paristech.fr

Keywords

machine learning

deep learning

likelihood

kernels

ensemble learning

gradient descent

generalization

model selection

overfitting

cross-validation

regularization

Overview

- What kind of problems can machine learning solve?
- Some popular supervised ML algorithms:
 - Linear models
 - Support vector machines
 - Random forests
 - (Deep) neural networks.
- How do we select a machine learning algorithm?
- What is overfitting, and how can we avoid it?

What is (Machine) Learning?

Why Learn?

Learning:

Modifying a behavior based on experience (F. Benureau)

- Machine learning: Programming computers to
 - model data
 - by means of optimizing an objective function
 - using example data.

Why Learn?

- There is no need to "learn" to calculate payroll.
- Learning is used when
 - Human expertise does not exist (bioinformatics);
 - Humans are unable to explain their expertise (speech recognition, computer vision);
 - Solutions change in time (routing computer networks);
 - Solutions need adapting to new cases (user biometrics).

What about Al?

Artificial Intelligence

ML is a subfield of **Artificial Intelligence**

- A system that lives in a changing environment must have the ability to learn in order to adapt.
- ML algorithms are building blocks that make computers behave more intelligently by generalizing rather than merely storing and retrieving data (like a database system would do).

Zoo of ML Problems

Unsupervised learning

Learn a new representation of the data

Clustering

Group similar data points together

- Understand general characteristics of the data;
- Infer some properties of an object based on how it relates to other objects.

Clustering: applications

- Customer relationship management: Customer segmentation
- Image compression: Color quantization
- Document clustering: Group documents by topics (bag-of-words)
- Bioinformatics: Learning motifs.

Dimensionality reduction

Find a lower-dimensional representation

Dimensionality reduction

Find a lower-dimensional representation

- Reduce storage space & computational time
- Remove redundances
- Visualization (in 2 or 3 dimensions) and interpretability.

Supervised learning

Make predictions

Classification

Make discrete predictions

Classification

Classification: Applications

- Face recognition: independently of pose, lighting, occlusion (glasses, beard), make-up, hair style.
- Character recognition: independently of different handwriting styles.
- Speech recognition: account for temporal dependency.
- Medical diagnosis: from symptoms to illnesses.
- Precision medicine: from clinical & genetic features to diagnosis, prognosis, response to treatment.
- Biometrics: recognition/authentication using physical or behavioral characteristics: Face, iris, signature...

Regression

Make continunous predictions

Regression: Applications

- Car navigation: angle of steering
- Kinematics of a robot arm
- Binding affinities between molecules
- Age of onset of a disease
- Solubility of a chemical in water
- Yield of a crop
- Direction of a forest fire

Parametric models

- Decision function has a set form
- Model complexity ≈ number of parameters

$$f(x) = \alpha_1 x_1 + \alpha_2 (x_1 x_2)^{\beta} + \alpha_3 \log(x_3)$$

Non-parametric models

- Decision function can have "arbitrary" form
- Model complexity grows with the number of samples.

$$f(x) = \frac{1}{K} \sum_{i:x_i \in \mathcal{N}_K(x)} y_i$$

Linear models

Linear regression

- Least-squares fit: $oldsymbol{eta} = rg \min ||X oldsymbol{eta} oldsymbol{y}||_2^2$
- Equivalent to maximizing the likelihood $p(\mathcal{D}|\boldsymbol{\beta})$ under the assumption of Gaussian noise
- Exact solution $\hat{\beta} = (X^{\top}X)^{-1}X^{\top}y$ if X has full column rank

Classification: logistic regression

Linear function → probability

$$\operatorname{logit}(p(y=1|\boldsymbol{x})) = \sum_{j=1}^{n} \beta_j x_j + \beta_0$$

- Solve by maximizing the likelihood
- No analytical solution
- Use gradient descent.

Support Vector Machines

Large margin classifier

 Find the separating hyperplane with the largest margin.

When lines are not enough

When lines are not enough

When lines are not enough

- Non-linear mapping to a feature space
- https://www.youtube.com/watch?v=3liCbRZPrZA29

The kernel trick

- The solution & SVM-solving algorithm can be expressed using **only** $k(x,x')=\langle \Phi(x),\Phi(x')\rangle$
- Never need to explicitly compute $\Phi(x)$
- k: kernel
 - must be positive semi-definite
 - can be interpreted as a similarity function.

$$f(\boldsymbol{x}) = \sum_{i=1}^{n} \alpha_i^* y^i k(\boldsymbol{x}^i, \boldsymbol{x}) + b^*$$

• Support vectors: training points for which $\alpha \neq 0$.

Random Forests

Decision trees

- Well suited to categorical features
- Naturally handle multi-class classification
- Interpretable
- Perform poorly.

Ensemble learning

- Combining weak learners averages out their individual errors (wisdom of crowds)
- Final prediction:
 - Classification: majority vote
 - Regression: average.
- Bagging: weak learners are trained on bootstraped samples of the data (Breiman, 1996).
 - bootstrap: sample n, with replacement.
- Boosting: weak learners are built iteratively, based on performance (Shapire, 1990).

Random forests

Combine many decision trees

- Each tree is trained on a data set created using
 - A bootstrap sample (sample with replacement) of the data
 - A random sample of the features.
- Very powerful in practice.

(Deep) Neural Networks

(Deep) neural networks

Nothing more than a (possibly complicated)
 parametric model

(Deep) neural networks

Fitting weights:

- Non-convex optimization problem
- Solved with gradient descent
- Can be difficult to tune.

(Deep) neural networks

- Learn an internal representation of the data on which a linear model works well.
- Currently one of the most powerful supervised learning algorithms for large training sets.

(Deep) neural networks

Internal representation of the digits data

```
504192131435
361728694091
124327386905
607618793985
333074980941
446045610017
16302/178026
783904674680
783157171163
029311049200
202718641634
19133854)742
```

Generalization & overfitting

Generalization

- Goal: build models that make good predictions on new data.
- Models that work "too well" on the data we learn on tend to model noise as well as the underlying phenomenon: overfitting.

Overfitting (Classification)

Overfitting (Regression)

Figure from Hastie, Tibshirani & Friedman, The Elements of Statistical Learning.

Model complexity

Simple models are

- more plausible (Occam's Razor)
- easier to train, use, and interpret.

Regularization

 Prevent overfitting by designing an objective function that accounts not only for the prediction error but also for model complexity.

min (empirical_error + λ*model_complexity)

Rember the SVM

the margin

$$\arg\min_{\pmb{w},b} \left(\frac{1}{2}||\pmb{w}||^2 + C \sum_{i=1}^n \max(0,1-y^i (\langle \pmb{w},x^i\rangle + b)) \right)$$
 inverse of

45

Ridge regression

$$\hat{eta}_{
m ridge} = \arg\min_{oldsymbol{eta}} ||oldsymbol{y} - Xoldsymbol{eta}||_2^2 + \lambda ||oldsymbol{eta}||_2^2$$
 prediction error regularizer hyperparameter

Unique solution, always exists

$$\hat{\boldsymbol{\beta}}_{\text{ridge}} = (X^{\top}X + \lambda I)^{-1}X^{\top}\boldsymbol{y}$$

Grouped selection:

Correlated variables get similar weights.

Shrinkage

Coefficients shrink towards 0.

Geometry of ridge regression

Model selection & evaluation

 If we evaluate the model on the data we've used to train it, we risk over-estimating performance.

Proper procedure:

- Separate the data in train/test sets

Train Test

- Proper procedure:
 - Separate the data in train/test sets

Train Test

Proper procedure:

- Separate the data in train/test sets
- Use a cross-validation on the train set to find the best algorithm + hyperparameter(s)

Train Test

Proper procedure:

- Separate the data in train/test sets
- Use a cross-validation on the train set to find the best algorithm + hyperparameter(s)
- Train this best algorithm + hyperparameter(s) on the entire train set
- The performance on the test set estimates generalization performance.

ML Toolboxes

Python: scikit-learn

http://scikit-learn.org

Get started in python: http://scipy-lectures.github.io/

R: Machine Learning Task View

http://cran.r-project.org/web/views/MachineLearning.html

Matlab™: Machine Learning with MATLAB

http://mathworks.com/machine-learning/index.html

- Statistics and Machine Learning Toolbox
- Neural Network Toolbox

Summary

Machine learning =

data + model + objective function

Catalog:

- Supervised vs unsupervised
- Parametric vs non-parametric
- Linear models, SVMs, random forests, neural networks.

Key concerns:

- avoid overfitting
- Measure generalization performance.