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High Perf graphic
processor (GPU)
Nvidia TESLA K10
>7 billions transistors
>Tflops on a single
chip !

High Perf
microprocessor (CPU)
Intel Xeon E7

>2 billions transistors
100W

Mobile CPU and GPU
Based on ARM designs
3D gaming with <1W !
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On a single chip,
all transistors work

But things are changing




April 2015

e Since transistors have entered the nanometer
regime, transistor scaling brings little benefit

* Very difficult to make nanotransistors reliable
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« More than Moore » research

* Nanotechnology brings new devices to CMOS
that can give it new features

» Novel functions: memory effects, sensor, energy harvesting...

S

Novel memories

NEMS sensors
CEA LETI

More than Moore comes with challenges




Electronic nanodevices :

the good and the challenge

* Nanoelectronics’ devices are amazing
— Compact, low power

— Novel functions: memory effects,
sensor, energy harvesting...
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* Few products with nanoelectronics!

Can we design for technology's imperfections?
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Neuron compute using nanoelectronics/nanoionics devices

Controlled current
source
lon channel

~500nm

Connection, nonlinear

dynamics, memory

Synapses
== ,\;~"~l‘\\;“-.. .‘ /,,_\,f
\\\j
NS
<)\
A\ °

Brains are extremely energy efficient based on
nanodevices. Can it be an inspiration?




* Biological « nanodevices » are not ideal electron devices
Example of ion channel (controlled current source)

— Patch clamp current record
C S5pA= mp g
()
| —-—
S
)
O opAfL - m
100 ms, .
Time > Hille et aI, 2001

Current is pure telegraph noise!

And in a neuron, only ~100 ion channels open at the same time
(Schneidman, 1998)

Total ion channel current fluctuatesby v100/100 = 10% !

Can we take some inspiration from the way biology
manages to compute with “imperfect” devices?
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Question of the class

* We struggle with unreliable nanodevices, while
biology shows us it is possible to strive with them
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save energy

2= ¢ Computing with errors: “Detect and correct”

* Approximate computation
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seeud o Approximate computation
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Nanodevices are imperfect

* Variability

* Noise / unpredictability

First, let’'s look at the case of CMOS




NanoCMOS: high variability becomes

Intrinsic

Source _!: Drain
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Variation in number of dopants causes unavoidable
mismatch between transistors
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* ST Microelectronics since 28nm
* Now Samsung and Globalfoundries

OXIDE

Silicon on Insulator wafer

@ Weber et al, IEDM 2008 -



Channel is
created physically
- Low leakage

- No need for
channel doping!

Weber et al, IEDM 2008
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* Intel: since 22nm

e Also TSMC, Samsung, Gloablfoundries...

Burried channel surrounded
by gate!

Undoped channel
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These solutions still have limitations g

* New variability issues when ultrascaled
* (gate material...)

How about true nanoelectronics ?




Carbon nanotubes FETs 1/2

* Variability issue of carbon nanotubes

Shulaker et al ,

CNTs I Nature 2013

Huge intrinsic variety of carbon nanotubes
Sorting techniques inaccurate!

(r11) armchair
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Carbon nanotubes FETs 2/2

* Low frequency noise order of magnitudes
higher than bulk materials!

* Noise issue:

— Surface vs. volume

Source o 5o Drai
Nt PO~

I | Substrate (BG) Doped CNTs f

Gate

i Drain

: flntrinsi& CNTs

Si ptype Bulk case Nano case
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Stochastic switching in Spin Torque

Magnetic

Memory

B
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Programming Pulse Duration At (ns)

Measurements on an in-
plane magnetization
structure (T. Devolder,
IEF/Univ. Paris-Sud)

V, : arbitrary unit (<1V)

e Switching fundamentally stochastic due to basic
magnetism physics (no switching without thermal

noise)

@ Vincent et al, IEEE Trans Biomed Circuits and Systems, 9, p. 166, 2015
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Resistive memory (memristors) 1/2

e Memristors: memories that switch due to
atomic effects

.

OFF s{ate

Current [pA]

RESET process

SET broceés

21



Memristors

HP Labs, Borghetti et al, Nature 464 (2010)
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How do we normally deal with

imperfections?

e Conventional microelectronics:

—Design for Worst Case




Example: setting circuit’s clock frequency g

1

of<

tmax

* tay - time of the longest delay that can
happen within a clock cycle, assuming all
the transistors are the worst possible
ones!
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Problem with worst case desigh "

* |t largely wastes the potential of a technology

* Significant issue with modern CMOS...

... and maybe not sustainable at all
with nanodevices!!!




Two big strategies for « Better-than-

worst-case » desig

 Detect and correct errors
— Example here: RAZOR

e Accept an approximate result
— The approach of Biology?




seeud o Approximate computation
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The RAZOR system: idea

* | want to design a low power system at e.g. 100MHz

* Usually: | choose lowest supply voltage so that circuit always
works at 100MHz in the worst case situation

* Here: | choose supply voltage so that circuit typically works at
100MHz

And | find a way to detect if an operation did not have time to

finish so that it can be flushed

o .
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The RAZOR system

Optimized'for
Enenly ERGIOICY. ™~ ossrsmescsfossmssmns

iy = T . S Optimized for
a) Robust Operation

: J L : J| MEM Jul] we
™ IF i (read-only) - E (reg/mem)
& g bubble =
-
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g [
Flush flushiD
Contmll" | Fal |
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@ Ernst et al ASPDAC 2005
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Results

Energy/Performance Characteristics

Pipeline
Throughput

Total Energy,
=E . tE

total = “proc recovery

Optimal E, .,
i

Energy of Processor h . ~~__ Energy of

Operations, E . Pipeline

Energy of Processor Recovery,
w/o Razor Support Erecovery

>

Decreasing Supply Voltage

Ernst et al ASPDAC 2005 ¢




weenw * Approximate computation

i * Computing with noise

 Toward bioinspired computing
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Approximate computing

e Let’s think about it...

* Do we really need absolutely exact result for
everything?

e The cost of exactness

o .
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A current trend toward approximate g

Energy Efficency
through Significance-
Based Compufing

Dimitrios S. Nikolopoulos and Hans Vandierendonck,
Queen'’s University of Belfast

save energy

Nikolaos Bellas, Christos D. Antonopoulos, and

Hlustrations by JUDE BUFFUM Spyros Lalis, University of Thessaly
Georgios Karakonstantis and Andreas Burg, Ecole

Polytechnique Fédérale de Lausanne

Uwe Naumann, RWTH Aachen University

An extension of approximate computing, significance-based computing
exploits applications’ inherent error resiliency and offers a new
structural paradigm that strategically relaxes full computational
precision to provide significant energy savings with minimal
performance degradation.

Computer 2014
mistake5

IEEE Spectrum 2015

o »




How are real numbers coded in

electronics?

* Fixed Point representation

* Floating Point representation

Biology certainly does not use
Floating Point




Modern application: Neural networks

with Fixed Point

* Neural networks usually simulated with 32
bits or 64 bits floating point (GPU or CPU)

* Inference also works in low precision Fixed
Point!




Approximate neural network

mm Double
mm Q38
7||== Q34
mm Q33
mm Q3.2
6= Q3.1

Table 7. CIFAR-10 classification error rate with different bit-
width combinations

Activation Weight Bit-width ¥
Bit-width | 4 8 16  Float 5 4
4 830 750 7.40 7.44 £
8 758 695 695 6.78 -
16 758 682 692 683 =
Float | 7.62 694 696 698

Lin et al, ICML 2016

Layer 1 Layer 2 Output

Stromatias et al, Front Neurosci 2015

Machine learning applications are especially adapted

@ to approximate computing 56



Going further: Accepting incorrect least

significant bits
Example with CMOS
18x18-bit Multiplier Block at 90 MHz and 27 C

100.0000000%
_ _ = 10.0000000%
. 35% energy savings with 1.3% error L 1 0000000%
- 0.1000000%
.,/ - 0.0100000%
’ 22% saving J - 0.0010000%

= 0.0001000%
—&— random L 0.0000100%
= 0.0000010%
= 0.0000001%
Pr——r———T1—1———+ 0.0000000%

.78 1.74 1.70 1.66 162 1.58 1.54 1.50 I'd6 142 1.38 1,34 1.30 1.26 1.22 1.18 1.14

T T Sup
Environmental-margin Zero-margin

@169V @154V

Error rate

Voltage (V)
once every 20 seconds!

Very significant energy saving (V2) if you accept errors

@ Ernst et al ASPDAC 2805



Need for associated ecosystem

EnerJ: Approximate Data Types for Safe
and General Low-Power Computation

Werner Dietl
Luis Ceze

Adrian Sampson

Emily Fortuna
Dan Grossman

Danushen Gnanapragasam

University of Washington, Department of Computer Science & Engineering
http:/ /sampa.cs.washington.edu/

Abstract

Energy is increasingly a first-order concern in computer systems.
Exploiting energy-accuracy trade-offs is an attractive choice in
applications that can tolerate inaccuracies. Recent work has explored
exposing this trade-off in programming models. A key challenge,
though, is how to isolate parts of the program that must be precise
from those that can be approximated so that a program functions
correctly even as quality of service degrades.

We propose using type qualifiers to declare data that may be
subject to approximate computation. Using these types, the system
automatically maps approximate variables to low-power storage,
uses low-power operations, and even applies more energy-efficient
algorithms provided by the programmer. In addition, the system
can statically guarantee isolation of the precise program component
from the approximate component. This allows a programmer to
control explicitly how information flows from approximate data

tn nranica data Tmnartantle amnlaving ctatin analucic aliminatac

in data-centers. More fundamentally, current trends point toward a

“utilization wall,” in which the amount of active die area is limited

by how much power can be fed to a chip.

Much of the focus in reducing energy consumption has been
on low-power architectures, performance/power trade-offs, and re-
source management. While those techniques are effective and can
be applied without software knowledge, exposing energy considera-
tions at the programming language level can enable a whole new set
of energy optimizations. This work is a step in that direction.

Recent research has begun to explore energy-accuracy trade-offs
in general-purpose programs. A key observation is that systems
spend a significant amount of energy guaranteeing correctness.
Consequently, a system can save energy by exposing faults to the
application. Many studies have shown that a variety of applications
are resilient to hardware and software errors during execution
[1,8,9,19,21-23, 25, 31, 35]. Importantly, these studies universally
show that applications have portions that are more resilient and

UNIVERSITE
S PARIS
SWw
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Outline of the class
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Can we give up determinism?

* Another idea: stochastic computing

e How to compute product with stochastic bit
streams? (like Gaines)

* Precision as a function of observation time

crs) n



Other examples of stochastic computing

° P
Sum P@)=P(C)P(X)+(1-P(C)P(Y)
P(Y) -
P(C)
* Square
P(X 011011
PX) i P(2)=P(X) ! ) , P(2)=P(X)?
011011 Yo AND
011011 T—D 001001

Delay 101101

The big challenge of correlations

@ a




Stochastic computing can be very adapted to

inference tasks

* |dea: encode probabilities by probabilities

* Asingle C element (8 transistors) implements Bayes rule!

i((1001001011 cE )iloitoooo: Z 2 z: @ P(Z) _ P(X)P(Y)
o BT P(X)P(Y)+ (1 —P(X))(1—P(Y))
P(V)
* They can be cascaded:
B —(me}— & }
CE }—
Spam detector g;@—‘_ P(VI{EL...,E;})
, 91 CE (stochastic)
E —{(wo st }— CE) |

Ey P*(E,)
(binary) (stochastic)

* But brings challenges too! (temporal correlations)

@ Friedman et al, IEEE TCAS I, 2016:; IJAR 2017 %42



Example of spam classification

S

Comprendrs le monde,
construire I'avenir®

A Do want to get pizza for lunch?

B Can please check my stochastic
simulations?

If want to earn a fortune, send a
$100 check to Nigeria and we will
transfer $10,000 to your account.

D My weekly commute to Nigeria
includes a transfer in Morocco. | will
check if my flight is on schedule- if so,
do want to get pizza when |
arrive?

E There is a S10 fee for all check
transfers.

Value

1.0 -
0.8
0.6 . A
- B
« C
0.4- . L] D
3 E
i N
024 . J
= : i i i
- " = l
H - :
0.0 * I ' . .
L2 AR LI R BALS | L AL AR R | LA AP B LR AR AL | L
100 000 10000 100000 1000000

Bitstream Length

A promising lead, lots of work necessary

Friedman et al, IEEE TCAS |, 2016; IJAR 2017
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Interglacial

First understood in the 80’s for quaternary Ei I B
. .. . . SE s ]

glaciations [C.Nicholis] E 8 ' ISEES

Now also observed in physics and biology £2 M W T

|ldea: increasing a system’s sensitivity to small inputs by
adding noise

* Seen in neuronsin vitro
 Some evidence suggests it may be used by the brain

Similarly, some circuits can have behavior improved by noise!

@ "



The canonical theory of stochatic resonance

1

~ 0:6— A hypothetical particle that evolves along

_;5 o t(t) = =V'(z) + Ao cos(2nFt) + x(t)
Bistability ~ Subthreshold  Noise (D)
o drive

Position of the particle x

Periodical part of the response

X (D) cos(2nFt + ®(D)) X (D) = ADU \/47';(?;};5?%2}?2

x10*

» 1 ( AV)
—A0 =1 TK = exp | ———
—A0=05 V2r D
ol —A0=01 |

1} - Periodical response has a maximum as
a function of noise

Periodic response X

— 0 5 10 15

@ Noise intensity D ae




Free layer CoFeB 1.7 nm

, A
Tunnel barri MgO 1.0 nm /\

CoFe 2.5 nm
Ru 0.85 nm
) Pinned layer CoFeB 2.4 nm

/ i

Same basic technology as Spin Torque MRAM
Energy barrier AE depends on material and volume of the free layer

Small size — low barrier — easy switching
— high frequency oscillations

46



Measured at Iow DC current:

117 TTAP
5 175 J \ ‘ JM ‘
150 am s P
200 300 400 500
Time (ms)
150 \ Anti-Parallel
o 10N <tpp> =8.5ms State :
£ 50 . Poisson
> o e process
@)
150 . Parallel
100 - <tp>=10.1ms State
50
0 3 § A TN T
0 10 20 30 40 50 60 70
Dwell-times 1t (ms)
Fy = ! =53.8Hz F,: natural frequency with no source
<Tp>+<Typ>

@

Locatelli et al, Phys Rev Appl 2014; Mizrahi et al, IEEE Trans Mag 2015
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Experiment: Noise Controls Frequency and Phase Locking PPAR'S

r mmmmmmmmmmmmmm ,

70 I T I T I I T I ' I ' I T I ! II
) g—— _ _
Drive ~ 60 - @;__
| | | | | 5 50 _Fac ' PY é ‘/
> I |
=k o 40¢ :
)
> 0r /@ 1 ]
fo 20 - ‘ <TAP > +< Tp> =
. (o '
Noise 10 Number of oscillations per i
O | . | . | . | . | Secgnd | . | . |
0 5 10 15 20 25 30 35 40
V,c. = 63 mV while Electrical noise (mV)
V., =235 mV @OK o — S I
g Rop @y @W 1T
AE =225 kT 5 R [
] n 0n i
Natural frequency = 0.1 Hz &) " R, 1] | ,JL il J,— UL
Thermal noise (room Lo Yannnnnnnnninnnnnnnnnunnnnnmnne
temperature) 28 l H 1
+ 0o -
White electrical noise R et ek el i el
0 50 100150 O 50 100150 O 50 100150200

Mizrahi et al.. Scientific Reports 2016 /M€ (MS) Time (ms) Time (ms),



Effect of Drive Amplitude and Frequency

B Ol
o O

Electrical noise (mV)
N
o

w
o

=
o

Ok

0 20 40 60 80 100

Drive voltage (mV)

Boundaries synchronization

" Model Experiments

Electrical noise (mV)

R N W bH 01 O
O O O O O O O

[ Sync i’ - ’
I /i,

Drive frequency (Hz)

Natural frequency = 0.1Hz

— Synchronization possible at broad ranges of amplitudes

and frequencies

Mizrahi et al., Scientific Reports 2016

UNIVERSITE
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Minimum Energy Required for Synchronization s

Out of
plane
magnetic
tunnel
junction
Dz
AE = AEOW
RA
R = e
L
V.= cte

Sato et al., APL, 2014

Comprendre le mende,

10-4 T T T 1 T T T T T T . —

5 —o— Thermal + electrical noise §

10 —% — Thermal noise only ]

-6 ]

ol oAk

8 *** *****

D 10 *M"
= 10° F_.=100Hz ;
OEEA KA
T * K §
W 10™ * KKK = 100kHz 4
10" * *****************
10-13 ** ** Fac — 10MHz _:
104 . I . ! . | . . . . | | ]

0 5 10 15 20 25 30

Diameter (nm)

« Optimal junction diameter (natural frequency = drive frequency)
 Adding electrical noise is energy efficient

* E.i,<1013J

Mizrahi et al., Scientific Reports 2016 50



Industrial challenge of

Better than Worst Case

* How does industry feel about better than
worst case design?




seeud o Approximate computation
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Neuroinspiration

* Biology does not work with digital logic, uses
approximate and redundant coding, can
perform advanced computation, at low power

e A supercomputer (MW) cannot do what a brain does
(20W)

VS.




\YEI R CER

* Nanodevices with a lot of functionality

* Massive parallelism

* Slow, low power operations

@ 54



An example:

naptic computation

e Synapse = self-adapting connection between two
basic computing units (can change electrical resistance)

* Synapse = transmission + learning

S T P & s

: 9
it 3
i :fa
B el

?smg 0l Arthur,
o e /- NIPS 2006

With CMOS, difficult to cointegrate
logic/memory
But natural with nanoelectronics

e izt S iy >3 5 2
principals# Sier- pfincipal |
wAeurons = neuron sneurons .

b i s FRE ; =y = ::;:5: a2

~Gircuits - circuits -
l i3 o 2t 3 BN SRS RS SRS

@
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Bioinspired nanoelectronics

 Some nanodevices encompass memory (e.g.
spin torque magnetic memory)

* Perfect element for implementing synapses!

e Neural networks have excellent resilience to
their elements’ imperfections

BIOCOMP: G. W. Burr’s lecture




Conclusions

Nanodevices tend to be less reliable than traditional
electron devices

Worst case design may not be sustainable with
nanodevices

Alternate computing approaches that detect errors
or accept approximate results may better benefit
from nanodevices qualities

Groundbreaking ideas (computing with noise or like
biology) may allow true reinvention of computing
with nanodevices
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Thank you for your attention!




