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• Part I – Non-volatile memory (NVM) for digital data storage

• Storage Class Memory

• Types of NVM devices

• Importance of 2-terminal selectors

• Outlook

• Part II – Brain-inspired computing: an Industry perspective

2

Outline



June 30, 2017
BioComp Summer School: 
Analog resistive neuromorphic hardware IBM Research – Almaden

G. W. Burr
3

2012

2015

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

1993

1991

1992

Caltech

Joined IBM
Almaden

RSM

Computational
Electromagnetics

Phase-change
& Storage class

memory

Geoffrey W. Burr
photon
echoes

Holographic 
Data Storage

2013

2014

Principal RSM

Cognitive Computing



June 30, 2017
BioComp Summer School: 
Analog resistive neuromorphic hardware IBM Research – Almaden

G. W. Burr
4

Quite sparse (¿1bit/4F2)

Quite dense (À1bit/4F2)

Back-End-Of-the-Line-compatible
Non-Volatile Memory:

a fundamental “building block”

enabling a range of applications

Standalone
S-class Storage Class Memory
(Enhanced Flash)

Artificial
synapses
(Non-VN
Computing)

Standalone M-class SCM
(Hybrid memory)

Embedded storage
(Automotive)

Embedded memory
(Low-power, mobile computing)

Computation-in-Memory
(Distributed computing)

Programmable e-fuses
(FPGAs, reconfigurable computing)

NVM
(long-term
digital
storage)

Access
Device

(highly 
nonlinear or 

transient switch)

.0.1.2.3

Storage Class Memory

SCM
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1 CPU operations  (1ns)

Get data from L2 cache (<5ns)

Read or write to DISK   (5ms)

Get data from TAPE   (40s)

...(in human 
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(T x 109)

second

minute

hour

day

week

month

year

decade

century

millenium

Access time...
(in ns)

Problem (& opportunity): The access-time gap between memory & storage

TAPE

DISK

RAM

CPU

Yesteryear 

• Modern computer systems have long had to be designed around hiding the access gap 
between memory and storage  caching, threads, predictive branching, etc.

• “Human perspective” – if a CPU instruction is analogous to a 1-second decision by a human,
retrieval of data from off-line tape represents an analogous delay of 1250 years
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Problem (& opportunity): The access-time gap between memory & storage

• Today, Solid-State Disks based on NAND Flash can offer fast ON-line storage, 
and storage capacities are increasing as devices scale down to smaller dimensions…

TAPE

DISK

FLASH
SSD

RAM

CPU

Today 

TAPE

DISK

RAM

CPU

…but while prices are dropping, the performance gap between memory and storage
remains significant, and the device endurance of Flash is not likely to improve.
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Access time...
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Write to FLASH, random (1ms)
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Memory/storage gap

Yesteryear 
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Problem (& opportunity): The access-time gap between memory & storage

Research into new solid-state non-volatile memory candidates 
– originally motivated by finding a “successor” for NAND Flash –

has opened up several interesting ways to change the memory/storage hierarchy…

Near-future 

ON-chip
memory

OFF-chip
memory

ON-line
storage

OFF-line
storage

Decreasing
co$t
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Get data from DRAM/SCM (60ns)
10

1 CPU operations  (1ns)

Get data from L2 cache (<5ns)

Read or write to DISK   (5ms)

Get data from TAPE   (40s)

Access time...
(in ns)

Write to FLASH, random (1ms)

Read a FLASH device (20 us)

1) Embedded Non-Volatile Memory – low-density, fast ON-chip NVM

2) Embedded Storage – low density, slower ON-chip storage

3) M-type Storage Class Memory – high-density, fast OFF- (or ON*)-chip NVM

4) S-type Storage Class Memory – high-density, very-near-ON-line storage

TAPE

DISK

RAM

CPU

SCM

* ON-chip using 3-D packaging

Memory/storage gap
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S-type vs. M-type SCM

Memory
Controller

DRAM

SCMI/O
Controller

SCM

SCM

Disk

Storage
Controller

CPU
Internal

External

M-type: Synchronous
• Hardware managed

• Low overhead

• Processor waits

• New NVM  not Flash

• Cached or pooled memory

• Persistence (data survives despite 

component failure or loss of power) requires
redundancy in system architecture

S-type: Asynchronous
• Software managed 

• High overhead

• Processor doesn’t wait, 
(process-, thread-switching)

• Flash or new NVM

• Paging or storage

• Persistence  RAID

~1us read latency

8
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Quite sparse (¿1bit/4F2)

Quite dense (À1bit/4F2)

Back-End-Of-the-Line-compatible
Non-Volatile Memory:

a fundamental “building block”

enabling a range of applications

Standalone
S-class Storage Class Memory
(Enhanced Flash)

Artificial
synapses
(Non-VN
Computing)

Standalone M-class SCM
(Hybrid memory)

Embedded storage
(Automotive)

Embedded memory
(Low-power, mobile computing)

Computation-in-Memory
(Distributed computing)

Programmable e-fuses
(FPGAs, reconfigurable computing)

NVM
(long-term
digital
storage)

Access
Device

(highly 
nonlinear or 

transient switch)

.0.1.2.3
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Ingredients of crosspoint memory

NVM memory element

plus access device

Generic SCM Array

• Improved FLASH

• Magnetic Spin Torque Transfer 

 STT-RAM

 Magnetic Racetrack

• Phase Change RAM

• Resistive RAM

• Ferroelectric RAM

2) High-density access device (A.D.)

1) NVM element

• 2-D – silicon transistor or diode

• 3-D  higher density per 4F2

• polysilicon diode (but <400oC processing?)

• MIEC A.D. (Mixed Ionic-Electronic Conduction)

• OTS A.D. (Ovonic Threshold Switch)

• Conductive oxide tunnel barrier A.D.

10
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Limitations of Flash
Asymmetric performance

Writes much slower than reads

Program/erase cycle

Block-based, no write-in-place

Data retention and Non-volatility

Retention gets worse as Flash scales down

17
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Endurance

• Single level cell (SLC)  105 writes/cell

• Multi level cell (MLC)  104 writes/cell

• Triple level cell (TLC)  ~300 writes/cell

Future outlook

• Scaling focused solely on density 

• but 3-D schemes worked!!

12
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STT (Spin-Torque-Transfer) RAM
• Controlled switching of free magnetic layer in a 
magnetic tunnel junction using current, leading to 
two distinct resistance states

• Inherently very fast  almost as fast as DRAM

• Much better endurance than Flash or PCM

• Radiation-tolerant

• Materials are Back-End-Of-the-Line compatible

• Simple cell structure  reduced processing costs

Strengths

Weaknesses
• Achieving low switching current/power is not easy

• BEOL temperatures can affect STT-MRAM device stack

• Resistance contrast is quite low (2-3x)  achieving tight distributions is ultra-critical

• High-temperature retention strongly affected by scaling below F~50nm

• Tradeoff between fastest switching and switching reliability

Outlook: Strong outlook for an Embedded Non-Volatile Memory to replace/augment DRAM.

Racetrack Memory offers hope for using STT concepts to 
create vertical “shift-register” of domain walls  potential 

densities of 10-100 bits/F2

.0.1.2



June 30, 2017
BioComp Summer School: 
Analog resistive neuromorphic hardware IBM Research – Almaden

G. W. Burr
15

Phase Change Memory at IBM Almaden
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.0.1
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• Mature (large-scale demos & products)

• Industry consensus on material  GeSbTe or GST

• Large resistance contrast  analog states for MLC 

• Offers much better endurance than Flash

• Shown to be highly scalable (still works at ultra-small F) and Back-End-Of-the-Line compatible

• Can be very fast (depending on material & doping)

• High-resistance state undergoes “Ovonic threshold switching” at reasonable voltages

Phase-change RAM
Phase Change Material

‘heater’
wire

insulator

word line

bit 
lineaccess device

• Switching between low-resistance crystalline, 
and high-resistance amorphous phases, controlled 
through power & duration of electrical pulses

Strengths

Weaknesses
• RESET step to high resistance requires melting  power-hungry, thermal crosstalk?

To keep switching power down  sub-lithographic feature and high-current Access Device

To fill small feature  ALD or CVD  difficult now to replace GST with a better material

Variability in small features broadens resistance distributions

• 10-year retention at elevated temperatures can be an issue  recrystallization

• Device characteristics change over time due to elemental segregation  device failure

• MLC strongly affected by relaxation of amorphous phase  “resistance drift”

Outlook: 3D Xpoint product now in early customer assessment, 

motivated by density (two layers of 3-D Access Devices) –

if successful at S-type SCM  maybe opportunity for M-type SCM as well….0.1.2
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Memristors

http://nanotechweb.org/cws/article/lab/43477
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Memristors

original explanation as a “non-filamentary RRAM” 
turned out to be incorrect for HP’s material system (TiO2 )
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RESET

Resistive RAM Voltage-controlled formation & dissipation of an oxygen-vacancy 
(or metallic) filament through an otherwise insulating layer

• Good retention at elevated-temperatures

• Simple cell structure  reduced processing costs

• Both fast and ultra-low-current switching have been demonstrated

• Some RRAM materials are Back-End-Of-the-Line compatible

• Was a new field  high hopes for improved material concepts

• Less “gating” Intellectual Property to license

• Some RRAM concepts offer co-integrated NVM & Access Device 

• Possibility for 3-D silo scheme like 3-D Flash

Strengths

Weaknesses
• Highly immature technology – wide variation in materials hampers cross-industry learning

• Demonstrated endurance is slightly better than Flash, but lower than PCM or STT-RAM

• Switching reliability an issue, even within single devices, and read disturb can be an issue

• An initial high-voltage “forming” step is often required

• To attain low RESET switching currents, circuit must constrain current during previous SET

• Unipolar and bipolar versions – bipolar typically better in both write margins & endurance, 
but then requires an unconventional bipolar-capable Access Device (silicon diode is out)

• Intra-device variability MUCH worse at low power  very few atoms in the filament

• CBRAM (metal atom filament) offers higher signal contrast than RRAM (defect filament)

Outlook: Outlook is unclear.  Clear opportunities for embedded memory. Opportunity for 

following 3-D Flash into Z dimension attractive, but many uncertainties remain 

about prospects for reliable storage & memory products.

Top electrode

Bottom electrode

“Forming”
step

SET

oxide

Conductive
filament

.0.1.2



June 30, 2017
BioComp Summer School: 
Analog resistive neuromorphic hardware IBM Research – Almaden

G. W. Burr
20

Non-filamentary RRAM

Make diffusion easy  fast writes…   but poor retention.

Make diffusion hard  great retention…   but writing is slow.

 “voltage-time” dilemma
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Ferroelectrics

FeRAM
• Fast, high endurance

• Imprint, fatigue
• Destructive read
• Poor density

FeFET

• Fast, high endurance

• Imprint, fatigue?
• How to integrate?
• Poor density
• Also acts as a 

Flash memory
 reduced endurance

Müller, IEDM 2013
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Non-volatile memory wish-list

PCM • Need lower co$t

• ALD process for a fast, robust material

• Reliable sub-lithographic patterning

• need to solve few-atom switching as only path to low-power

Filamentary-RRAM

• Voltage-dilemma – how to get fast switching AND good retention?

Nonfilamentary-RRAM

• More resistance contrast!

• Solve tradeoffs between retention and switching current

• Solve process difficulties (temperature, etching)

MRAM

CBRAM • Still need better reliability

• HfOx results very exciting – materials work needs to lead to  

more device implementations so learn what the issues might be…

FeRAM
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Quite sparse (¿1bit/4F2)

Quite dense (À1bit/4F2)

Back-End-Of-the-Line-compatible
Non-Volatile Memory:

a fundamental “building block”

enabling a range of applications

Standalone
S-class Storage Class Memory
(Enhanced Flash)

Artificial
synapses
(Non-VN
Computing)

Standalone M-class SCM
(Hybrid memory)

Embedded storage
(Automotive)

Embedded memory
(Low-power, mobile computing)

Computation-in-Memory
(Distributed computing)

Programmable e-fuses
(FPGAs, reconfigurable computing)

NVM
(long-term
digital
storage)

Access
Device

(highly 
nonlinear or 

transient switch)

.0.1



June 30, 2017
BioComp Summer School: 
Analog resistive neuromorphic hardware IBM Research – Almaden

G. W. Burr

NVM memory element

plus access device

Generic SCM Array

• Improved FLASH

• Magnetic Spin Torque Transfer 

 STT-RAM

 Magnetic Racetrack

• Phase Change RAM

• Resistive RAM

2) High-density access device (A.D.)

1) NVM element

• 2-D – silicon transistor or diode

• 3-D  higher density per 4F2

• polysilicon diode (but <400oC processing?)

• MIEC A.D. (Mixed Ionic-Electronic Conduction)

• OTS A.D. (Ovonic Threshold Switch)

• Conductive oxide tunnel barrier A.D.

Ingredients of crosspoint memory

24
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Need for an Access Device

Access device needed in series with memory element

• Cut off current ‘sneak paths’

that lead to incorrect sensing and wasted power

• Typically diodes used as access devices

• Could also use devices with highly non-linear I-V curves
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Novel Mixed-Ionic-Electronic-Conduction (MIEC) Access Device
Strengths

•High enough ON currents for PCM –
cycling of PCM has been demonstrated

•Low enough OFF current for large arrays

•Very large (>>1e10) endurance for typical 
5uA read currents

•Voltage margins > 1.5V with tight 
distributions  sufficient for large arrays

•CMP process demonstrated

•512kBit arrays demonstrated w/ 100% yield

•Scalable to <30nm CD, <12nm thickness

•Capable of 15ns write, 50ns read

•Highly stable in un-/half-select conditions

Weaknesses
•Maximum voltage across companion 
NVM during switching must be low     
(1-2V)  influences half-select condition 

and thus achievable array size

•Endurance during NVM 
programming is strongly dependent on 
programming current

Gopalakrishnan, VLSI 2010
Shenoy, VLSI 2011
Burr, VLSI 2012
Virwani, IEDM 2012
Burr, VLSI 2013

Shenoy, Semi. Sci. Tech. 29/104005 (2014)

Burr, JVST-B 32/040802 (2014)

Narayanan, DRC & IEDM 2014,
J-EDS 3/423 (2015), IEEE J.ESTC&S (2016)

Padilla, IEEE-TED 62/963 (2015).0.1
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A

B
A) Efficient design point: 

nearly all injected power 
delivered to “selected” device(s)

B) Inefficient design point:     

much more injected power,   
which is mostly dissipated
in “unselected” devices!!

27

DRC 2014 – Crossbar array design using SPICE modeling 
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IEDM 2014 paper: compare access devices using SPICE
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• Below 1mW contours shown, 
parallel writes are still a viable option… 

.0.1
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Device
Availability

Paths towards SCM

Embedded Storage
(low density, 

slower ON-chip storage)

S-type SCM
(high-density, 

near-ON-line storage)

1-10us
emerging NVM 
RRAM? PCM? 
CBRAM?

* ON-chip using 3-D packaging

M-type SCM
(high-density, 

fast OFF-(or ON*)
-chip NVM)

Embedded
Non-Volatile Memory
(low-density, fast ON-chip NVM)

<<1us
emerging NVM 
STT-RAM? CBRAM?

PCM??/RRAM??

Future DRAM 
(working memory, etc.)

DRAM

Capital
investment Applications

3-D NAND
NAND Future NAND applications

(consumer devices, etc.)

Co$t 


This path no 
longer possible

.0.1.2.3.4.5
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3D-XPoint believed to be PCM + OTS

Phase-Change Memory + Ovonic Threshold Switch
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Quite sparse (¿1bit/4F2)

Quite dense (À1bit/4F2)

MIEC+NVM: a fundamental,

BEOL-compatible “building block”

Standalone
S-class SCM
(Enhanced Flash)

Artificial
synapses
(Non-VN
Computing)

TEC

MIEC

BEC

Standalone M-class SCM
(Hybrid memory)

Embedded storage
(Automotive)

Embedded memory
(Low-power, mobile computing)

Computation-in-Memory
(Distributed computing)

Programmable e-fuses
(FPGAs, reconfigurable computing)PCM

RRAM
CBRAM
MRAM

Access
Device

Artificial
synapses

.0.1
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• Motivation

• Look to the brain now that Dennard scaling is exhausted

• The Brain 

• What do we like about how the brain does computing?

• (What DON’T we like about how the brain does computing?)

• The Computer Scientists 

• What are the computer scientists up to?

• What might they be missing out on?

• Where can hardware (devices, circuits, systems) play a role, in …

• Accelerating Deep Learning

• TrueNorth, NVM-for-Backprop-Training

• Transcending Deep Learning

• Towards Brain-like energy-efficiency & “Machine Intelligence”

• Applications & outlook

32

Outline for Part II
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“Motivation:” Brains & light bulbs
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“means” of computation (“how”)

“brain-like”

“brain-like”

Von Neumann
computation

human

brain

conventional

computers

“ends” of 

computation 

(“what”)

NON Von Neumann
computation

34

Motivation: towards “Brain-like” computation
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A "memory" delivers “operations” &  “operands”

to a dedicated "central processing unit"

CPU Memory

BUS

Von Neumann 

“Bottleneck”

50 years of amazing progress thanks to 

“Moore’s Law” (more transistors per chip)!

www.hpcwire.com/2013/12/11/hpc-progress-free-lunch/#/

But clock frequencies are 

no longer increasing…

… and Chip power has hit

a ceiling.

Since this means that

Single-thread 

performance is not

increasing…

… the only path to better 

system performance is

adding more Cores.

Von Neumann architecture

.0.1.2.3.4
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The real driver behind “Moore’s Law” 

(more transistors per chip)

[1] IEEE Trans. Electr. Dev., ED-31(4), 452 (1984)

…but those “scaled” transistors 

were actually faster AND 

required less power!!  [1]

Unfortunately, Dennard 

scaling stopped working 

about 8-10 years ago…

Gate oxide scaling (tox) problems

 “high-K metal gate”

Voltage scaling problems

 “new CMOS switch”

OFF leakage problems

 “dark silicon”

We added more transistors by making them smaller…

Bob

Dennard

Dennard scaling

.0.1.2.3
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Adjusting our assumptions about computation

Conventional computing requires that ALL the devices work right.

This is getting difficult to guarantee across billions of devices 

as voltages & device-sizes scale down.

Several recent trends in computing try to modify this assumption in different ways…

1) Quantum computing 
• much more sensitive to noise (need low temperatures)

• …but much more functionality PER device (qubit)

3) Brain-inspired computing – redundancy through learning

a. Deep Neural Networks
• Apply “too many” resources to the problem yet get a result

• It can be “OK” if some of the resources are unreliable

b. Even-more-Neuromorphic computing  “machine intelligence”
• Use sparsity in time & space to reduce overall computing power

2) Approximate/Stochastic computing – redundancy through design

.0.1.2.3



June 30, 2017
BioComp Summer School: 
Analog resistive neuromorphic hardware IBM Research – Almaden

G. W. Burr

But the 
network architecture 

is also incredibly efficient: 

only a small fraction of 
neurons are active 

at any given instant.

Some of the brain’s energy efficiency comes from the biochemistry 
involved in signal transmission.

Neuron

Synapse

human

brain

100 billion neurons,
interconnected by

100 trillion synapses

In nature  complexity is “free” …

… but size, weight & power
are highly constrained

So the distributed
computational architecture 
of the brain evolved to
maximize energy efficiency

Brain as an architecture for non-Von Neumann computation

38
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About the brain

• What do we like about how the brain does computing?
• Low power
• Massive parallelism 

• many processing elements (lots of neurons)
• massive interconnectivity (large fanout: 1-10k synapses PER neuron)

• Sparse Distributed Representations massive capacity

39
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Sparse Distributed Representations
• Dense Representations

Few bits (8-128)    Example:  ASCII “m” = 01101101

Efficient but no semantic meaning

• Sparse Representations

Many bits (thousands),  few 1’s, mostly 0’s

Appears inefficient but evolution has picked it!

Each bit has semantic meaning

• Example of SDR uses: Union of Properties

Color           00000010001000000001100000000100    (‘red)

Shape 00001000100010100000100000000000    (‘sphere’)

Union         00001010101010100001100000000100    (‘red sphere’)

Spatial firing patterns of 8 place cells recorded 
from the CA1 layer of a rat. The rat ran back and 
forth along an elevated track, stopping at each 
end to eat a small food reward. Dots indicate 
positions where action potentials were recorded, 
with color indicating which neuron emitted that 
action potential.

en.wikipedia.org/wiki/Place_cell
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About the brain (continued)

• What do we like about how the brain does computing?
• Low power
• Massive parallelism 

• many processing elements (lots of neurons)
• massive interconnectivity (large fanout: 1-10k synapses PER neuron)

• Sparse Distributed Representations massive capacity
• Time is really important
• Computing despite …

• noise
• unreliable & stochastic components

• Makes rapid decisions despite uncertainty & incomplete information

• What don’t we like about Von-Neumann architecture?
• Bringing data TO processing is inefficient for data-centric workloads

• would there be benefits by doing processing AT the data??
• System has to be perfect (100% yield)

• more and more difficult as scaling continues
• are there ways to build systems that are still useful at 90-99% yield??

• Dependence on software programming – labor-intensive  expensive!
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Brain-inspired computing methods

human

brain

The brain exhibits … 

Lots of neurons

Lots of synapses PER neuron

Electrochemical signal transmission

Integrate-and-fire in time (many spikes over time)

Integrate-and-fire in space (many spikes arriving in a vicinity)

Stochastic behavior

Recurrent connectivity

Sparse-distributed representations

Hierarchy (multiple layers)

Local inhibition

Local AND remote connectivity

Hebbian synaptic plasticity (cells that fire together, wire together)
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What are the CS folks doing/ignoring?

• What are the computer scientists up to?
• Design-based Big Data Analytics – not “neural”
• Machine Learning

• Deep Neural Networks
• pros & cons here

• Transcending DNN – LSTM, Recurrent NN, Reinforcement Learning
• Machine Intelligence
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A simple taxonomy of Cognitive Computing

Deep-Neural Networks
(Deep Machine Learning

w/ backpropagation)

Machine

Intelligence

Other 
Machine Learning

(Support Vector Machines, k-means, 

knowledge-graphs, etc.)

not yet mature.
mature,

not as scalable.

learn efficiently w/ 

unlabeled, 

time-dependent data

same

mature, scalable.

requires lots of 

labelled, static data.

… can’t readily explain 

its decisions.

more explainable & 

user-adjustable.

Machine Learning: solving a specific task on 

labeled data by defining & optimizing an objective function

Brain-inspired Computing

.0.1.2.3.4.5.6
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Jan 2011 – win at “Jeopardy!”

www.ibm.com/smarterplanet/us/en/ibmwatson/index.html

Combination of natural language processing and “design-based” Big Data analytics

Engagement Advisor:
• more meaningful interactions with customers

Explorer: 
• make sense of big data, providing 

context, trends and relationships

Discovery Advisor:
• accelerate research

2014 – IBM Watson group

Helping doctors identify treatment options

Helping planners recommend better investments
Transform customer experiences, financial analysis, risk management & compliance

Helping retailers transform customer relationships
Transform the shopping experience, merchandising and supply networks, sales operations

Helping government help its citizens
Citizens’ experience, policy & performance, public security

Health care:

Finance:

Retail:

Public sector:

IBM Watson
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image-net.org/challenges/LSVRC/2014/

Cognitive Computing based on Deep Neural Networks
Systems that learn at scale, reason with purpose, and interact with humans naturally.

Image recognition:

Speech recognition:

Machine translation:

.0.1.2.3.4.5
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image-net.org/challenges/LSVRC/2014/

Cognitive Computing based on Deep Neural Networks
Systems that learn at scale, reason with purpose, and interact with humans naturally.

Image recognition:

Speech recognition:

Machine translation:

 Impact on enterprise clients (IBM Watson) AND on consumers…

.0.1.2.3.4.5
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image-net.org/challenges/LSVRC/2014/

Cognitive Computing based on Deep Neural Networks
Systems that learn at scale, reason with purpose, and interact with humans naturally.

Image recognition:

Speech recognition:

Machine translation:

www.nytimes.com/2016/12/14/magazine/the-great-ai-awakening.html

Pre-2016: “One is not what is for what he writes, 

but for what he has read.”

 Impact on enterprise clients (IBM Watson) AND on consumers…

.0.1.2.3.4.5
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2) classification results

compared to labels

3) corrections 

“backpropagated”

& all weights updated

Deep Neural Networks
1) Input data (images,

raw speech data, etc.)

input to neural network

“MNIST” database

~1998

 check-reading ATMs

Hardware opportunity: Efficient, low-power deployment  IBM TrueNorth

Forward inference: “This is a seven.”
Fully trained network

Training: “um..  I have no idea?”UN-trained network

Hardware opportunity: Train big networks FASTER and at LOWER POWER.

“This is a seven.”

A Deep Neural Network contains

multiple layers, …

each layer containing many neurons, …

each neuron driven through many

synaptic weight connections 

from other neurons.

Problem: It can 

take WEEKS to 

train these 

networks, even 

with many GPUs.

.0.1.2.3.4.5.6.7.8
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Artificial Neural Networks
A brief history:

1943 – McCullough & Pitts 

 mathematical representation of a neural network

late 1940s – Hebbian learning

 “cells that fire together, wire together”

1958 – Perceptron network

1969 – Minsky & Pappert paper 

 1-layer perceptron can’t solve XOR

2006 – “deep” neural networks  – layer-by-layer “greedy” training

late 2000’s – availabilty of powerful GPUs (Graphics Processing Unit)

2012 – “ImageNet Classification with Deep Convolutional Neural Networks,”

Krizhevsky, Sutskever, and Hinton, NIPS 2012

Input 

1990’s – multilayer backprop. is too slow 

 rise of statistical machine learning (support vector machines, etc.)

1986 – Rumelhart & Hinton popularize backpropagation

x

o

x

x

x

o o
o

o
o o

o

x
x

x

x
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Artificial Neural Networks
A brief history:

1943 – McCullough & Pitts 

 mathematical representation of a neural network

late 1940s – Hebbian learning

 “cells that fire together, wire together”

1958 – Perceptron network

1969 – Minsky & Pappert paper 

 1-layer perceptron can’t solve XOR

2006 – “deep” neural networks  – layer-by-layer “greedy” training

late 2000’s – availabilty of powerful GPUs (Graphics Processing Unit)

2012 – “ImageNet Classification with Deep Convolutional Neural Networks,”

Krizhevsky, Sutskever, and Hinton, NIPS 2012

Input 

1990’s – multilayer backprop. is too slow 

 rise of statistical machine learning (support vector machines, etc.)

1986 – Rumelhart & Hinton popularize backpropagation

x

o

x

x

x

o o
o

o
o o

o

x
x

x

x
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Deep Neural Networks

• Strong impact on 
applications such as …

• Image recognition
• 1 billion parameters

• Speech recognition
• 40 million parameters

• (compare MNIST dataset)
• 100 thousand parameters

Step 1 - Training Step 2 - Execution

– Difficult task (Optimization)

– Modify adjustable parameters 
(weights) in the model to match 
the input-output pairs for the 
training data.

– Takes weeks on many cores

– Easier task (Forward evaluation)

– Given the input, generate the output 
(e.g., “classify it”) using the trained 
model parameters (weights).

– Takes milliseconds on a single core

26.2

13.8

7.3

15.3
12.6

6.6

2012 2013 2014

ImageNet Competition Top-5 Error

Deep NNsTraditional Techniques

Er
ro

r 
ra

te
 (

to
p

 5
)
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What is backpropagation?

x1

528
input

neurons

x2

x528
A

A

A

B

Cropped
(22x24
pixel)

MNIST

images 

10
output

neurons

“0”

“1”

“8”

“9”

1) Forward 
propagation

x250

wij

xj
=f(S xi wij)

xj
B

B

Sxi wij
A

A

 y10

 yk

 y2

 y1

NN results
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x1

528
input

neurons

x2

x528
A

A

A

B

Cropped
(22x24
pixel)

MNIST

images 

10
output

neurons

“0”

“1”

“8”

“9”

125
hidden

neurons
x1

B

xj
B

250
hidden

neurons

1) Forward 
propagation

x250

wij

 y10

 yk

 y2

 y1

NN results

What is backpropagation?
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d10 = y10

dk = yk

d2 = y2

d1 = y1

2) Compare
against
correct
answer

– g1

– g2

– gk

– g10

x1

528
input

neurons

x2

x528
A

A

A

B

Cropped
(22x24
pixel)

MNIST

images 

10
output

neurons

“0”

“1”

“8”

“9”

125
hidden

neurons
x1

B

xj
B

250
hidden

neurons

x250

wij

NN results

3) Back-
propagation

Dwij =h * xi * dj

“learning rate”

What is backpropagation?
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Deep Neural Networks

human

brain

Uses PART of what the brain exhibits … 

Lots of neurons

Lots of synapses PER neuron

Electrochemical signal transmission

Stochastic behavior

Recurrent connectivity

Sparse-distributed representations

Hierarchy (multiple layers)

Local inhibition

Local AND remote connectivity

Hebbian synaptic plasticity (cells that fire together, wire together) Backprop

Integrate-and-fire in space (many spikes arriving in a vicinity)

Integrate-and-fire in time (many spikes over time)

(RBMs)

(LSTMs, etc.)
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“Deep Learning” on GPUs
1) Input data (images,

raw speech data, etc.)

input to neural network 2) classification results
compared to labels

3) corrections 
“backpropagated”
& all weights updated

Combine 
100-1000 

input vectors
into an 

input matrix
(“mini-batch”)

£ =

 excitation
into next
hidden 

neurons

… multiply by current 
weight matrix,

All steps can be 
mapped to
matrix multiplications

 can run very fast 
on GPUs

.0.1
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With a GPU, 

matrix-multiplication is 

fast & parallel…

x

x1

x2

x528

B

wij

S xi wij

yj
=f(S xi wij)

Computation needed: “Multiply-accumulate”

… but x and w values must arrive from DRAM,

and new y values sent back to DRAM

.0.1
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S. Gupta et al. "Deep learning with limited numerical precision.”  arXiv:1502.02551 (2015).

• If you simply clip all the 

numbers during ANN training, 

you will lose out because your 

weight updates get smaller 

than the LSB you’re using

• Simple stochastic rounding

at this LSB during ANN training can 

retain ALL the performance but

with many fewer bits of precision

Reduced precision for Deep Neural Networks
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Reduced precision for Deep Neural Networks

8bit INTs
for
Forward
Inference

arxiv.org/abs/1704.04760

wccftech.com/nvidia-volta-gv100-gpu-tesla-v100-architecture-specifications-deep-dive/

Nvidia Volta GPU

Google TPU
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With a GPU, 

matrix-multiplication is 

fast & parallel…

x

x1

x2

x528

B

wij

S xi wij

yj
=f(S xi wij)

Computation needed: “Multiply-accumulate”

… but x and w values must arrive from DRAM,

and new y values sent back to DRAM

.0.1
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Like conventional memory 

(SRAM/DRAM/Flash), 

an NVM is addressed 

one row at a time,

to retrieve previously-stored 

digital data.

NVM (Non-Volatile Memory): usually for storing digital data (0s and 1s)

NVM technologies include:

MRAM (Magnetic RAM)

PCM (Phase-Change Memory)

RRAM (Resistance RAM)

resistors
Analog

Selector device

NVM

Address
decoder

Sense-Amplifiers
(analog current  0s and 1s)

Vread

0 1 0 1 0 1

.0.1.2
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pair
Conductance

Selector device

NVM

N1

N2

Nn

2)Weights w  conductances G+
, G-

(Ohm’s Law: V= IR  I = GV)

63

x1

x2

x528

B

wij

Sxi wij

yj
=f(S xi wij)

Multiply-accumulate with NVM: computed at the data, by physics

1)Different peripheral circuitry

3)Apply “x” voltages to every row
(Kirchhoff’s Current Law  S I)

4)Analog measurement

M2
+ -M1

+ - M3
+ -

I= S G- V
I= S G+ V

I=G+ V(t)

I=G- V(t)

xi

wij

=G+- G-
xi

.0.1.2.3.4
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Modular network of lightweight cores 

 co-located computation, memory, & communication 

Ultra-low-power execution of 

pre-trained neural networks

Merolla et al., Science, 345(6197), 668 (2014).

SyNAPSE project – the TrueNorth chip

64
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Merolla et al., Science, 345(6197), 668 (2014).

~5,400,000,000 Transistors

SyNAPSE project – the TrueNorth chip
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TrueNorth
in socket

100 

MHz

FPGA

TrueNorth: 70mW total chip power, running a typical recurrent network at real-time

 26pJ energy per synaptic event (128 synapses per neuron spiking at 20Hz)

• modern general-purpose microprocessor, optimized simulator (Compass) running the same network:

consumes 176,000x more energy per event 

Merolla et al., Science, 345(6197), 668 (2014).

Temperature,

in Celsius

• state-of-the-art multiprocessor neuromorphic system (SpiNNaker), 48 chips each w/18 microprocessors, similar network: 

consumes 769x more energy per event, requires 11.4x more silicon area

SyNAPSE project – power results
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Mobile development platform
Miniature Form-Factor

Low Power, Low Weight

Real Time, User Friendly

70mm

125mm

< 100g

Ben Shaw

shawbe@us.ibm.com

“SyNAPSE University”
1 week, on-site hands-on training

SyNAPSE project – system variants
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Each TrueNorth Chip

• 4096 “cores” 
(of 256 axons x 256 neurons)

• 1 million neurons
• 256 million synapses
• 5.4 billion transistors
• 70mW power

Single Chip
SyNAPSE

Supercomputer

Rack with 16 boards

• 1 million cores
• 256 million neurons
• 64 billion synapses

Very power efficient!!

Only performs
forward evaluation of ANNs –

not training.

IBM TrueNorth/SyNAPSE chip

16 Chip Board

Board with 16 chips

• 65536 cores
• 16 million neurons
• 4 billion synapses

.0.1.2.3
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NVM-for-Machine-Learning

N1

N2

Nn

pairs

M1

+ -

Conductance

Selector device
NVM

Like TrueNorth: compute AT the weight data

Unlike TrueNorth: learning performed on-chip

For TrueNorth, power is everything

For NVM-for-ML, need speed-up over GPUs

M2

+ -

.0.1.2

2) What are the potential benefits, in speed & power?

• Speed  Parallelism  Area-efficient circuits

Research challenges

1) What do we really need from the NVM devices?

• Recap of our IEDM2014, IEEE-TED2015 work

→ Need competitive ML performance

.3
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 First large-scale mixed hardware-software demonstration + tolerancing
 ~82% accuracy on MNIST with 5000 examples

Introduced…
• “crossbar-compatible” weight-update
• “G-diamonds” – represent distribution of synaptic-states graphically

70

Published work on “what do we need from the NVM?”
[1] IEDM 2014

.0.1.2
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IEDM 2014: xbar-compatible weight-update

Weight 
update:

Dwij = h

*xi * dj

xi

dj
h

xi

dj

Gij
+

Gij
–h

Weight update 

rule  not a 

problem!

[1] G. W. Burr, R. M. Shelby, et al., 
IEDM Technical Digest, 29.5, 
(2014).
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Crossbar-compatible 
weight update

Conventional
(“CS professor”)
weight update

B
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G

# pulses

G

Stochasticity
(erroneous weight updates

are possible)

Nonlinearity
(DG-per-pulse @ low-G

different 
from DG-per-pulse @ 

high-G)

# pulses

Increasing
G-response

Asymmetry
(DG-per-pulse for 

increasing G different 
from 

DG-per-pulse for 
decreasing G, e.g., 

abrupt RESET in PCM)

Decreasing
G-response

Devices Stuck-ON

Dead 
devices

Varying
Gmax

73

NVM imperfections

Abrupt RESET in 

Phase-Change Memory

 significant asymmetry
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G

# pulses

G

Stochasticity
(erroneous weight updates

are possible)

Nonlinearity
(DG-per-pulse @ low-G

different 
from DG-per-pulse @ 

high-G)

# pulses

Increasing
G-response

Asymmetry
(DG-per-pulse for 

increasing G different 
from 

DG-per-pulse for 
decreasing G, e.g., 

abrupt RESET in PCM)

Decreasing
G-response

Devices Stuck-ON

Dead 
devices

Varying
Gmax

74

How do NVM imperfections cause trouble?

…UNLESS change is much “easier” in 

one direction (often  low weights)

Low weights  small dj corrections  NO weights get updated (“freeze-out”)

Any NN tends to “dither” many of its 

weights, with no long-term effect …
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IEDM 2014: “G-diamond” concept

G+

G-
W

e
ig

h
t+

–

C

D

G
-

# pulses
C

D

G+

# pulses

C

• Graphical method for

understanding issues 

introduced by 

nonlinearity &

asymmetry

A

B

A

A

B

[1] G. W. Burr, R. M. Shelby, et al., IEDM Technical Digest, 29.5, (2014).
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IEDM 2014: Occasional RESET for PCM

• requires serial scan of 

conductance values

 best to RESET only 

infrequently

• requires 2 Full RESETs  

followed by iterative SET

• synaptic weight after RESET

NOT same as before

 inherently inaccurate

[1] G. W. Burr, R. M. Shelby, et al., IEDM Technical Digest, 29.5, (2014).
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Experimental NN implementation using PCM

PCM

Read mode Write mode

Master Bitline selected
by column address

500 x 661 PCM = 
(2 PCM/synapse 

* 164,885 synapses) 
+ 730 unused PCM

via

ILD

via

via

FET

GST

M1

M2

V1

M1

Row address
selects wordline

“Disruptor” Array Diagnostic Monitor

 512 x 1024 array

IBM/Macronix
PCRAM project: 
Chung Lam, 
Matt BrightSky

Hardware we had …
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Experimental NN implementation using PCM

NVM

Selector device

Mm

N1

N2

Nn

pairs

M1

+ - + -

Conductance

… was not the same as the 
hardware we wanted …
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Experimental NN implementation using PCM

Read PCM conductances
 weights

Write PCM with
identical pulses

Next MNIST example:
“Forward” neuron 

computation in software

“Backpropagation”
in software

All weight operations 
on PCMMm

N1

N2

Nn

M1

+ - + -

… but we wanted to do an experiment 
that told us what performance we 
migh expect with this target hardware…
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Accuracy results from IEDM 2014

0 1 2
0
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 [

%
]

Experiment

Map of
final
PCM 0 5 10 15 20

0

10

20

30

40

50

60

70

80

90

100 Matched simulation

conductances

(2 PCM/synapse * 164,885 synapses)

1) Measure PCM 
imperfections

2) Model in
NN simulator

[1] G. W. Burr, R. M. Shelby, et al., IEDM Technical Digest, 29.5, (2014).

• Reasonably good accuracy using PCM (82.9% generalization on “unseen” MNIST test set)

(each 5,000 examples)

Junwoo Jang
Prof. H. Hwang

(POSTECH)
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IEDM 2014: overall results

[1] G. W. Burr, R. M. Shelby, et al., IEDM Technical Digest, 29.5, (2014).

✓ Reasonably good accuracy on MNIST dataset using PCM 

(with 5,000 examples  82.9% generalization on “unseen” test set)

✓ Crossbar-compatible weight-update rule

✓ “G diamond” graphical concept

✓ Doing inaccurate & infrequent “Occasional RESET” should work

• Extensive tolerancing enabled by matching simulation to experiment

• In general, we found NVM-based NN to be … 

• highly resilient to random effects (NVM variability, yield, and stochasticity)

• highly sensitive to “gradient” effects that act to steer all synaptic weights

• Low “learning-rate”  high accuracy & low training energy

.0.1
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IEDM 2014: overall results

[1] G. W. Burr, R. M. Shelby, et al., IEDM Technical Digest, 29.5, (2014).

✓ Reasonably good accuracy on MNIST dataset using PCM 

(with 5,000 examples  82.9% generalization on “unseen” test set)

✓ Crossbar-compatible weight-update rule

✓ “G diamond” graphical concept

✓ Doing inaccurate & infrequent “Occasional RESET” should work

• Extensive tolerancing enabled by matching simulation to experiment

• In general, we found NVM-based NN to be … 

• highly resilient to random effects (NVM variability, yield, and stochasticity)

• highly sensitive to “gradient” effects that act to steer all synaptic weights

• Low “learning-rate”  high accuracy & low training energy

Problem!!!
MNIST dates from ~1998
 it’s now considered a “minor-league” ML problem!

We MUST get to competitive performance numbers:

~94% w/ 5,000 examples

97-98% w/ 60,000 examples

.0.1
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Conductance

# pulses

 Showed that high accuracy  
(~94% w/ 5,000 examples, 
97-98% w/ 60,000 examples)

is possible – NVM just needs a linear
conductance response w/ small steps

[2] Invited paper in IEEE-TED  (v62(11), 3498 (2015).)
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Published work on “what do we need from the NVM?”

 First large-scale mixed hardware-software demonstration + tolerancing
 ~82% accuracy on MNIST with 5000 examples

[1] IEDM 2014

.0.1.2
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IEEE-TED 2015: what we need from NVM
We showed that an “ideal” bi-directional NVM with a linear G-response 

of high dynamic range can provide 
the full performance available from the algorithm

[2] G. W. Burr, R. M. Shelby, et al., IEEE Trans. Electr. Dev., 62(11), 3498-3507 (2015).
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“Local Gains” technique for non-ideal-NVM devices

• reduces need to tune “learning rate” precisely

• improves performance (suppresses synapses that “dither”)

• reduces power consumption

This technique…

Carmelo di Nolfo
Irem Boybat
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Conductance

# pulses

 Showed that high accuracy  
(~94% w/ 5,000 examples, 
97-98% w/ 60,000 examples)

is possible – NVM just needs a linear
conductance response w/ small steps

[2] Invited paper in IEEE-TED  (v62(11), 3498 (2015).)
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Published work on “what do we need from the NVM?”

 First large-scale mixed hardware-software demonstration + tolerancing
 ~82% accuracy on MNIST with 5000 examples

[1] IEDM 2014

[3] Invited talk @IEDM 2015 (Neuromorphic Focus Session)

 showed prospects for speedup (up to 25x) and lower power (100x to 3000x)

.0.1.2
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Motivation: Need to Minimize Circuit Sharing (IEDM15)

87

Design of highly area-efficient circuits is essential

 read and write of many synaptic bitlines (& wordlines) in parallel

Tradeoff Circuit Complexity against Device and Algorithm Requirements

Shown prospects for 2-3 orders-of-magnitude speedup

and 120-2850x lower power

These speed benefits require minimal circuit sharing, cs

ISCAS 2017: Reducing Circuit Design Complexity for Neuromorphic Machine Learning Systems 

based on Non-Volatile Memory Arrays

87
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GPU

PCM (conservative)

PCM (aggressive)

88

NVM benefits in speed & power vs. GPU
These initial, “back-of-the-envelope” calculations suggest up to 25x speedup 

and 120-2850x lower power Machine Learning than GPUs

.0.1.2.3 [3] G. W. Burr, P. Narayanan, et al. (invited), IEDM 2015, T4.4 (2015).
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Target: chip for NVM-for-Machine-Learning acceleration

[8] P. Narayanan, A. Fumarola, et al., IBM J. Res. Dev., to appear (2017).

3-year goal: decide if it even makes sense to start designing this chip…
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Our routing is NOT point-to-point
“Route spikes to the right axons” “Copy to shadow copies of same set of somas”



June 30, 2017
BioComp Summer School: 
Analog resistive neuromorphic hardware IBM Research – Almaden

G. W. Burr
91

The business case for such a system (vs. a GPU)

Low Power
(inherent in the physics,
but possible to lose in the
engineering…)

Accuracy
(essential that final Deep-NN 

performance be indistinguishable from 
GPUs –hardest technical challenge)

Faster

(circuitry must be 
massively parallel)

Sweet spot: rather than 
buy GPUs, people buy 

this chip instead for 
training of Deep-NN’s

Still of interest for power-

constrained situations: 

learning-in-cars, etc.

Still of interest for some 

situations: learning-in-

server-room

Of zero 
interest

Of zero 
interest

Of zero 
interest

Of zero interest

.0.1.2.3.4.5

“Out of plane” axis  wide applicability 
(networks of varying shape with varying types of layers)

.6
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Deep-ML performance with existing NVM devices

[1] G. W. Burr, R. M. Shelby, et al., IEDM Technical Digest, 29.5, (2014).

Where we were in June 2014

• 82% accuracy w/ 5000 examples

• Too slow to try all 60,000 examples

in the “MNIST” dataset

Our experiment: 

82% TEST & TRAINING accuracy 

w/ 5000 examples

“What a GPU would get” with this network…

97-98% TEST accuracy w/ 60,000 examples

94% TEST accuracy w/ 5000 examples

Where we are in January 2017

• 96-97% TEST accuracy w/ 60,000 examples

• SAME wafer of PCM devices

TEST accuracy

TRAINING accuracy

What changed? • Multiple inventions, including
a new unit-cell concept (PCM++)

.0.1.2.3
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March 2017 tapeout: 2 ADMs and 8 macros

93

Estimated a …

• 25x speedup over GPU

• 100-3000x power advantage

What we estimated in June 2015 Where we are in January 2017

Estimating a …

• 500x speedup over GPU

• power analysis in progress…

93
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NVM-for-Machine Learning: Recent/upcoming papers
1. S. Sidler, I. Boybat, et al., “Large-scale neural networks implemented with non-volatile memory as the synaptic weight element: impact of 

conductance response," ESSDERC 2016, Sept. 2016.

• Impact of idealized jump-tables –

e.g., “how much of the conductance response must be linear?”

2. A. Fumarola, P. Narayanan, et al., “Accelerating Machine Learning with Non-Volatile Memory: exploring device and circuit tradeoffs," 

2016 Internat. Conf. on Rebooting Computing, Oct. 2016.

• Impact of real PCMO jump-tables, time-dependent conductances, some circuit choices

3. G. W. Burr, R. M. Shelby et al., “Neuromorphic computing using non-volatile memory," Advances in Physics X, 2(1), 89-124 (2017).

• Review of the NVM-for-neuromorphic field as a whole…

5. P. Narayanan, A. Fumarola, et al., “Towards on-chip acceleration of the backpropagation algorithm using non-volatile memory,” IBM 

Journal of Research and Development, to appear (2017)

• Summarizes the circuit design challenges

4. P. Narayanan, L. Sanches, et al., “Reducing Circuit Design Complexity for Neuromorphic Machine Learning Systems Based on Non-Volatile 

Memory Arrays,” ISCAS 2017.

• Impact of circuit choices (nonlinearity, derivative, implementation of “Occasional RESET”)

6. I. Boybat, C. di Nolfo, et al., “Improved Deep Neural Network hardware-accelerators based on Non-Volatile-Memory: the Local Gains 

technique,” submitted to Intl. Conf. Rebooting Computing (2017)

• Explains our local-gains algorithm
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Summary: on-chip learning with non-volatile memory

➢ NVM-based crossbar arrays CAN accelerate

training of Deep Machine Learning compared to GPU-based training

→ Multiply-accumulate performed AT the data

→ We see possibilities for 500x speedup & orders-of-magnitude lower power

➢ Need: competitive ML accuracy

✓ experimental results: 96-97% on “minor-league” MNIST using PCM

✓ Nearly ready to move from “minor-league” to “major-league” DNN problems

✓ “ideal” NVM w/ linear G-response of high dynamic range  sufficient!

→ ARC (RFI): use existing NVM (PCM, etc.); invent device/circuit/network techniques

→ YKT: Cognitive Materials/RPU project: develop new forms of NVM

➢ Need: area-efficient peripheral circuitry

✓ power benefits are quite significant 

✓ but design must preserve speedup benefits

 Aggressive timing & minimal circuit sharing (low cs)

.0.1.2



June 30, 2017
BioComp Summer School: 
Analog resistive neuromorphic hardware IBM Research – Almaden

G. W. Burr
96

Accelerate backpropagation training 
(e.g., Deep-NN, Conv-NN, and LSTM)…

…by performing multiply-accumulates on-chip
using analog resistive memory elements.

Unit 
cell

Unit 
cell

Unit 
cell

Unit 
cell

Unit 
cell

Unit 
cell

Unit 
cell

Unit 
cell

Unit 
cell

Unit 
cell = Existing NVM

(e.g., PCM, “PCMO”)

• Available now
• Truly non-volatile
• Compact cell
• Nonlinear + asymmetric

Capacitors
(CMOS-RPU)

• Available now
• Leaky  need refresh?
• Larger cell
• Suitably linear

Improved NVM
(Device-RPU)

• Yet to be developed
• Non-volatile
• Compact cell
• Linearity is key

(asymmetry can be dealt with)

IBM Research – multiple paths to faster ML training

Tayfun Gokmen (IBM Yorktown)
Seyoung Kim (IBM Yorktown)
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How memory device requirements vary between applications

Neuromorphic

for 

Storage Class Memory

for 

Neuromorphic

Resistance states: Need 2-8 distinct states need continuous range 

of resistance states

“device history” 

is… 

a distraction. absolutely essential.

LRS cannot be … too high 

 need fast read

too low  

 read aggregates 100’s of devices

Failing-as-SHORT is just as bad 

as Failing-as-OPEN

much worse

than Failing-as-OPEN

Any 2-terminal 

access device had 

better be… 

nearly perfect

+ cannot fail as

a SHORT

nearly perfect

+ cannot fail as 

a SHORT
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• What are the computer scientists up to?
• Design-based Big Data Analytics – not “neural”
• Machine Learning

• Deep Neural Networks

• cross-entropy loss
( “permission” to ignore f’ in the output layer)

• dropout 
(better regularization  better generalization)

• ADAGRAD 
(adaptively decrease learning rate  less hyperparameter tuning)

• ReLU, batch normalization
(suppress “internal covariant shift” during learning)

• convNets with NO fully-connected layers
(response to limited GPU memory & memory-bandwidth)

• Transcending DNN – LSTM, Recurrent NN, Reinforcement Learning

What are the CS folks doing/ignoring?

98
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For CS researchers, what is next?

Image-to-Text: 
Caption Generation with Attention

Attention on “Memory Elements”

Gated Recurrent Units & 
Long Short-Term Memory

Slides from Y. Bengio, NIPS 2015 talk.

99
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For CS researchers, what is next?
Deep Neural Networks + Reinforcement Learning

…for 
video 
games

V. Mnih et al., Nature 518, 529 (2015).

D. Silver et al., Nature 529, 484 (2016).

…for
Go

100
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Too much art, not enough science?

from “Deep learning, big data, and personal devices,”
Blaise Agüera y Arcas, Google, May 2016
@ SRC/NSF workshop on Intelligent Cognitive Assistants

Deep-NN might
be a “black box”…

…yet we can
(inefficiently)
engineer for 
performance 
because we get a 
quantitative 
metric (accuracy) 
from the “black box.”
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• What are the computer scientists up to?
• Design-based Big Data Analytics – not “neural”
• Machine Learning

• Deep Neural Networks
• pros & cons here

• Transcending DNN – LSTM, Recurrent NN, Reinforcement Learning
• Machine Intelligence

• What are the computer scientists missing out on?
• Too addicted to backpropagation & classification  “gravity well”
• Robustness in the presence of imperfections/noise
• Energy efficiency (“Is 0.5% higher accuracy really worth 30x more time & energy?”)
• Spike-based learning techniques

• STDP
• How to implement “strong” AI  “machine intelligence”??

What are the CS folks doing/ignoring?

102
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“means” of computation (“how”)

“brain-like”

“brain-like”

Von Neumann
computation

human

brain

conventional
computers

“ends” of 
computation 

(“what”)

NON Von Neumann
computation

Statistical
Machine
Learning

Artificial 
Neural

Networks

on CPUs

on GPUs

Towards
“brain-like”

energy 
efficiency?

How to get to brain-like energy efficiency?

103
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Spike timing dependent plasticity
(Bi and Poo)

G. Bi and M. Poo, J. Neuroscience, 
18(24), 10464 (1998)

Synapse

Input
spike

Output
spike

Pre THEN Post  STRENGTHEN synapse,  G↑

Pre AFTER Post  WEAKEN synapse,  G↓

Change in
Synaptic 
Conductance 

DG

Spike-Timing-Dependent Plasticity

104.0.1
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Slide from:    S. B. Eryilmaz et al., IEDM 2015, T4.1 (2015).
showing work from: D. Kuzum et al., Nano Lett., p. 2179 (2012)

STDP in NVM devices

105
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GND

Pre-synaptic 
Axon STDP Gate

WLwrite

Post-synaptic Dendrite 
Membrane Potential

BLread

Post-synaptic
STDP Feed

BLwrite

Pre-synaptic 
Axon Spike

WLread

PCM
element

2T1R PCM design for Spike-Timing-Dependent-Plasticity

Input
spikes

Output
spikes

IEDM2015

.0.1.2 Sangbum Kim (sangbum.kim@us.ibm.com)

Spike-Timing-Dependent-Plasticity (STDP)   
using Phase Change Memory
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human

brain

Uses PART of what the brain exhibits … 

Lots of neurons

Lots of synapses PER neuron

Electrochemical signal transmission

Integrate-and-fire in time (many spikes over time)

Integrate-and-fire in space (many spikes arriving in a vicinity)

Stochastic behavior

Recurrent connectivity??

Sparse-distributed representations

Hierarchy?? (multiple layers)

Local inhibition

Local AND remote connectivity

Hebbian synaptic plasticity (cells that fire together, wire together)Backprop

Spike-Timing Dependent Plasticity

108
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Backprop vs. Spike-Timing Dependent Plasticity

For BOTH: Instantaneous weight update of each synapse 
depends only on information available to 

TWO local neurons: immediate upstream & downstream neurons

But only for backprop are all those weight updates working together coherently
across the entire network towards a common goal 

 lower error on the data-examples in question

Backprop is scalable: it’s easy to make network bigger & it tends to get better…

Need to find an architecture/global-algorithm that can harness 
an STDP-like local learning rule for robust & scalable learning
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Brain-machine interfaces

Brain-machine interfaces & circuits @ biological time-scales  (G. Indiveri, E. Chicca, etc.)

http://www.ini.uzh.ch/research/36620

110
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“Deep Machine Learning” vs. “Machine Intelligence”

“Brain-inspired” computing
(1940’s understanding of the brain)

solving a specific task on labeled data by 
defining & optimizing an objective function

flexible systems that continuously learn from 
unlabeled data, and that perform (motor) 

actions, predict consequences of those 
actions, and then plan ahead to reach goals

CON:
• we’re sure the brain doesn’t do backpropagation

• can only handle static, labelled data

• insistence on quantifying performance 
may now be stifling innovation

PRO:

• we’re sure this is what the brain does

• MI should be able to handle 
unlabelled & temporal data

• MI should enable continuous learning

CON:
• we don’t know (yet) how the brain guarantees 

robust, stable convergence in learning

• we have to figure out how to appropriately 
quantify “performance”

“Brain-inspired” computing
(modern understanding of the brain)

“Machine Intelligence”“Deep Machine Learning”

PRO:
• can follow gradient descent thru backpropagation
 convergence to “good” solutions

• mapping to matrix manipulation  GPUs!!

• great progress in ML thanks to competitions 
• Many datasets created
• Focus on quantifying performance

• algorithm is scalable:
more resources  better performance

human
brain
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Easy Question: what is this man carrying?

Harder Question: What makes this scene unusual?

Gary Marcus, NYU (May2016 Workshop on Intelligent Cognitive Assistants)
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Kids vs dominant AI paradigm

In deep learning, it’s all correlation, and no causation

Gary Marcus, NYU (May2016 Workshop on Intelligent Cognitive Assistants)

113
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Children don’t just care about correlations

•They want to know WHY

• Why is the sky blue?
• How do birds fly?
• Where do babies come from?

Gary Marcus, NYU (May2016 Workshop on Intelligent Cognitive Assistants)

114
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this quickly leads them to a rich 
common-sense understanding of the world

Gary Marcus, NYU (May2016 Workshop on Intelligent Cognitive Assistants)115
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OUTPUTS:
Predictions

Context

Stable Concepts (SDR)

Motor commands

INPUT:
Spatial-temporal data 

streams of any kind

Machine Intelligence based on sequences of 
Sparse Distributed Representations

A potential path to handling
temporal, unlabelled data

 Maybe a path
to machine intelligence?

Requires HUGE fanout:
many POTENTIAL synapses

(internally analog, externally binary)winfriedwilcke@us.ibm.com

“Context-Aware Learning”

116
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Hierarchical Temporal Memory

4) Temporal Pooler
• invariant representation 
(SDR) of each “recognized” 
sequence

Map temporal data into sequences 

of Sparse Distributed Representations

3) Temporal Memory
• predict the 
“next” SDR
in the sequence
given “this” SDR

“Column” 
of “cells”

2) Spatial Pooler
• map each input 
excitation to an 
appropriate SDR of 
constant sparsity

1) Input Data
• encode input data into input neurons

“2.76”

Each cell can be predicted by 
lateral synaptic excitation from 
other cells, aggregated through 

distal segments

J. Hawkins, S. Blakeslee. On 
intelligence. Macmillan, 2007.
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Hierarchical Temporal Memory

human

brain

Uses PART of what the brain exhibits … 

Lots of neurons

Lots of synapses PER neuron

Electrochemical signal transmission

Integrate-and-fire in space (many spikes arriving in a vicinity)

Stochastic behavior

Recurrent connectivity

Sparse-distributed representations

Hierarchy (multiple layers)

Local inhibition

Local AND remote connectivity

Hebbian synaptic plasticity (cells that fire together, wire together)
“permanence”

Integrate-and-fire in time (many spikes over time)
“dendritic segments”

118



June 30, 2017
BioComp Summer School: 
Analog resistive neuromorphic hardware IBM Research – Almaden

G. W. Burr

ESCAPE: Accelerator for Machine Intelligence

1000 node parallel system 
Xilinx Zynq dual A9 core + FPGA, 
1 GB RAM, 
6x2 bi-di high-speed links

system topology: 3D mesh 
very high bandwidth 

Dual purpose
scale up HTM simulations 

to > 108 realistic neurons
platform for design 

of waferscale system

• ESCAPE will consist of 37 of these cards

• 27 FPGA/ARM nodes/card

• Very large & complex card, 55 cm x 46 cm, 46 layers (!)

• Very fast network (hundreds of GB/sec)

Winfried Wilcke,
IBM Almaden

winfriedwilcke@us.ibm.com
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Common
Sense

“Wacky Wednesday”

Children’s book by

Dr. Seuss

Random House

Publishing, 1974

Need a robust analog metric to quantize performance

on such tasks – “we’ll know it when we see it” will not suffice

Without such a metric, it will be difficult to combine the efforts of many researchers 

& perfect these systems through many tiny incremental improvements…

120
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IBM Research Frontiers Institute

For more information:  Sudhir Gowda, 
Associate Director, IBM Research Frontiers Institute
gowda@us.ibm.com
www.research.ibm.com/frontiers
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How can hardware play a role?

• Where can hardware (devices, circuits, systems) play a role, 
and what’s been done so far?

• Approximate computing 
• Stochastic computing
• Hardware for communicating between VN/Non-VN cores

• Address Event Representation
• TrueNorth, SpiNNaker, etc.

• Crossbar Memory for 
• accelerating backpropagation
• implementing STDP

• role for stochasticity
• Hardware for large-scale realistic brain simulations

• help understand epilepsy, Parkinson’s , Alzheimer’s 
• Brain-machine interfaces
• Machine Intelligence

• ESCAPE system for Machine Intelligence
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About the brain

• What DON’T we like about how the brain does computing?

• Not good at providing exact/precise answers

• always a non-zero chance of being “wrong”

• Cognitive biases due to numerous “shortcuts” 



123
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Cognitive biases
• Ambiguity effect – talking without knowing (exactly) what you’re talking about

• Focalism (Availability heuristic) – weighing the first piece of incoming (recalled) information too much

• Illusory truth-effect – repeating something doesn’t make it true

• Myside bias – interpreting info in a way which confirms our existing beliefs

• Selective perception – ignoring info that contradicts our existing beliefs

• Base rate fallacy – brain ignores general information, focuses a specific example

• Belief bias – we connect conclusions  to premises based on their credibility, 

even if that conclusion is not validly supported by those premises.

• Choice-supportive bias – psychological validation of our previous decisions

• The familiarity principle – we like the things we have been repeatedly exposed to

• Social desirability bias – we calibrate response to receive a positive evaluation

Social biases:

• Actor-observer asymmetry – our negative behavior  reflects unique situation; 

others’ negative behavior  general characteristic of their personality.

• Dunning-Kruger effect – less competence  more confidence;   minimum confidence occurs 

at medium competence – you finally know enough to know you don’t know everything

• False consensus effect – individuals consider themselves “normal,” thus assume others must think like they do

• The illusion of asymmetric insight –people tend to believe that their knowledge of others is 

many times more meaningful and broad than other people’s knowledge of them

www.zmescience.com/science/cognitive-biases-list/
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About the brain

• What DON’T we like about how the brain does computing?

• Not good at providing exact/precise answers

• always a non-zero chance of being “wrong”

• Cognitive biases due to numerous “shortcuts”

• Learning procedure is inefficient (can’t transfer learned weights)

• System is too holistic, so “debugging” is a nightmare

• we’re forced to understand the WHOLE system, 

because the system is not sufficiently modular

• What are we going to miss about the Von-Neumann architecture?
• General purpose  one piece of hardware, many customers/users

• Programmable – often can address problems not considered by designers

• Provides precise, reliable, repeatable answers

• Design is inherently modular

• It’s OK to have many domain experts who don’t/can’t comprehend whole system

• Input/output/requirements of each module can be specified readily
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“Some” imperfections are OK – great!

… …Specifications Specifications

Requirements Requirements

But basic engineering – like identifying how many would be 
“too many” imperfections – will not be easy.

Big data 
sets 

www.datasciencecentral.com/profiles/blogs/concise-visual-summary-of-deep-learning-architectures
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A roadmap of brain-inspired computing

“means” of computation (“how”)

“brain-like”

“brain-like”

Von Neumann
computation

human

brain

conventional

computers

Brain simulation 
(on supercomputer)

“ends” of 

computation 

(“what”)

NON Von Neumann
computation

Artificial 
Neural

Networks
on GPUs

IBM SyNAPSE
(TrueNorth)

Future chips
with NVM?

Dynamic 
Vision

Sensors

Brain-
Machine

Interfaces

Neuro-
morphic

chips

on CPUsStatistical
Machine
Learning
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Applications
Anything that requires

• Comprehension: natural language, vision of complex scenes

• understanding of context

• prediction/consequences of actions

• “Big Data” analytics

• multi-modal sensors (“electronic nose”)

• early-alert sensor networks (health-care, policing, tsunamis, etc.) 

• personal assistants (Siri, but predictive/proactive)

• “guide glasses” for the blind

• self-driving cars

• autonomous robots

• emergency

• search & rescue

• exploration

• military
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Challenges

• nature used evolution – we use engineering & design

• need “transparent” programming model

• how can we “modularize” design, enabling highly complex systems?

• ethical issues

• “network effect”: systems built with lots of data will perform better

 a few large companies could dominate

• how to maintain trust between consumers & suppliers of cognitive computing?

• “super-intelligence”: Artificial Intelligence systems that are “smarter” than we are

• until we really understand consciousness,

can we be sure it’s not just a function of network size?

• if we use the today’s AI to design tomorrow’s, what prevents “runaway” AI?

• a large number of jobs (47% [1]) could be affected by “computerisation”

• what will be the consequences of this shift?

in politics, economics, sociology

[1] C. B. Frey and M. A. Osborne, “The Future of Employment: How susceptible are 

jobs to computerisation?” Sept. 2013 
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Non-Von Neumann opportunities 

.0.1

• STDP-based NN: (e.g., spikes for learning not just communication)

• Killer app that requires learning-from-timing

• Architecture/global-algorithm that harnesses STDP-like local learning rule
for robust learning to support/enable above killer-app 

.2

• Machine Intelligence:
• Significant algorithm development needed  too early for crossbar device arrays!

Device researchers who want to have an impact will likely also need to
learn/know/advance the circuits/systems/algorithms module(s)

.3

• Forward inference engines  potentially huge volumes
• On smartphones (TrueNorth  NorthPole)
• Digital first  later analog opportunity too or no…?

• On-chip learning  lower volumes but potentially an essential enabling technology

• Digital w/ reduced precision

• Analog IF…
1. … peripheral circuitry supports massive parallelism  speed-up over GPU
2. … NVM devices support linear conductance change  same accuracy as GPU
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Conclusions

Thank you for your attention!

• will attain better energy-efficiency through more “brain-like” neuromorphic chips

• is unlikely to reach the full energy efficiency of the human brain anytime soon

 any AI with complexity similar to the human-brain would not be portable

• Opportunities from…

• neuromorphic circuitry to …

• … understand network dynamics

• … interface with the brain (prosthetics, etc.)

• accelerating Deep Learning…

• transcending Deep Learning…

• Moore’s law will end soon  future improvements in computers will come 

MOSTLY from improvements in architecture, 

NOT from better, or from more densely-packed, devices

• Brain-inspired computing …

• is already here – “brain-like” computation on conventional computers
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