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- Part | — Non-volatile memory (NVM) for digital data storage
 Storage Class Memory
» Types of NVM devices
* Importance of 2-terminal selectors
 Outlook

- Part |l — Brain-inspired computing: an Industry perspective
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Back-End-Or-the-Line-cOmpatible

Non-Volatile Memory:
a fundamental “building block”
enabling a range of applications
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Problem (& opportunity): The access-time gap between memory & storage
Access time... --(in human

perspe;ctivg) Yeste ryear

(in ns) (T x 10°)
1] |CPU ti 1 second
N-chi operations (1ns) CPU
memory 10 | Get data from L2 cache (<5ns)

Get data from DRAM/SCM (60ns - ¥
OFF-chip \ 100 / ( ) minute RAM

memory 10°

B} hour
ON-line 10*
storage

10° day
OFF-line \ 106 week
r .

Storage 107 | Read or write to DISK  (5ms) UET -

year

108

decade
109

century

1010

Decreasing

v Get data from TAPE (40s) millenium TAPE

e Modern computer systems have long had to be designed around hiding the access gap
between memory and storage - caching, threads, predictive branching, etc.

e “*Human perspective” — if a CPU instruction is analogous to a 1-second decision by a human,
retrieval of data from off-line tape represents an analogous delay of 1250 years
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Problem (& opportunity): The access-time gap between memory & storage

Decreasing

Access time...
(in ns)

memory

co$t

OFF-chip
memory

AN

ON-line

/ storage

AN

OFF-line

storage

AN

10°

1010

Yesteryear Today

CPU operations (1ns)

Get data from L2 cache (<5ns)
MG (60NS)

Memory/storage gap

Read a FLASH device (20 us)

Write to FLASH, random (1ms)
Read or write to DISK (5ms)

v Get data from TAPE (40s)

CPU CPU
v ¥
RAM RAM

DISK  DISK.
' '

TAPE TAPE

e Today, Solid-State Disks based on NAND Flash can offer fast ON-line storage,
and storage capacities are increasing as devices scale down to smaller dimensions...

...but while prices are dropping, the performance gap between memory and storage
remains significant, and the device endurance of Flash is not likely to improve.
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Problem (& opportunity): The access-time gap between memory & storage
Access time...

(in ns) Near-future
- 1 1 |CPU operations (1ns)
mI:ngg:-y 10 | Get data from L2 cache (<5ns) CPU
/ OFF-chip \ 100 Qlasfian : RAM
memeny 10l Memory/storage gap ;
/ gtlg;ggg \ 10* | Read a FLAST QeVICe (20 us) v
10°

OFF-line \ 10% | Write to FLASH, random (1ms)
|

storage 107 | Read or write to DISK  (5ms)
1010
v Get data from TAPE (40s) T APE

Decreasing
cos$t

Research into new solid-state non-volatile memory candidates
— originally motivated by finding a “successor” for NAND Flash —
has opened up several interesting ways to change the memory/storage hierarchy...
1) Embedded Non-Volatile Memory — low-density, fast ON-chip NVM
2) Embedded Storage — low density, slower ON-chip storage

3) M-type Storage Class Memory — high-density, fast OFF- (or ON*)-chip NVM
4) S-type Storage Class Memory — high-density, very-near-ON-line storage

* ON-chip using 3-D packaging
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S-type vs. M-type SCM

Internal
CPU
—| DRAM
I ‘ Memory [
Controller[
I/0 —| SCM
Controllen = T _
A Pl
--------- - *| SCM

SCM
Storage h—|_>

Controller“—|_>
Disk’

External
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M-type: Synchronous
e Hardware managed
e Low overhead
e Processor waits
e New NVM - not Flash
e Cached or pooled memory

e Persistence (data survives despite
component failure or loss of power) requires
redundancy in system architecture

- ~1lus read latency —

S-type: Asynchronous
e Software managed
e High overhead

e Processor doesn’t wait,
(process-, thread-switching)

e Flash or new NVM
e Paging or storage
e Persistence - RAID




Back-End-Or-the-Line-cOmpatible

Non-Volatile Memory:
a fundamental “building block”
enabling a range of applications
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Ingredients of crosspoint memory

1) NVM element
« Improved FLASH

- Magnetic Spin Torque Transfer

- STT-RAM
- Magnetic Racetrack

« Phase Change RAM
- Resistive RAM
- Ferroelectric RAM

2) High-density access device (A.D.)

« 2-D — silicon transistor or diode

« 3-D > higher density per 4F2
« polysilicon diode (but <400°C processing?)
e MIEC A.D. (Mixed Ionic-Electronic Conduction)

- OTS A.D. (Ovonic Threshold Switch)
« Conductive oxide tunnel barrier A.D.
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Has Moore’'s Law Come to an End for NAND?

® Maintaining planar evolution so far... But, Scaling is getting difficult
* Sub-lynm hitting the limit of cell reliability = Enterprise ? -
* Tremendous investment cost required to continue = Consumer ?
qoak Jb .l Rl

120nm 1Gb

90nm 2Gb

60nm 8Gb
50nm 16Gb

19 128Gb

Future die shrinks:

- Prohibitively expensive, reliability concerns, diminishing wafer productivity

Flas 1 el ? ;
OW How to power the Internet of Everything with NAND? w

ANalog re e heuromorp araware > d(cC




Limitations of Flash

A tri f 100000 52000
symmetriC perrormance 10000 17000
Writes much slower than reads 10000 2000 3000
(7))
o
Program/erase cycle o 1000
Block-based, no write-in-place 100 49
10 ‘

Data retention and Non-volatility
Retention gets worse as Flash scales down

‘ & Maximum Random Read IOPs & Maximum Random Write I0OPs ‘

USB disk LapTop Enterprise

Endurance
e Single level cell (SLC) > 10° writes/cell 1000
e Multi level cell (MLC) = 10% writes/cell 200
e Triple level cell (TLC) = ~300 writes/cell 2 100 5010
%3 17
Future outlook 10 7
e Scaling focused solely on density
1

[ ) - I'
but 3-D schemes worked!! USB disk LapTop Enterprise

‘ [ Sustained Read Bandwidth B4 Sustained Write Bandwidth ‘
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P-BiCS Flash

Bit Line
N+
Diffusion r Source Line
I I I I Select Gate
No Diffusion 1 T W W
between
2o ainnn
AR RA
B R B .}Control
Non-doped Gates
pon-Si . . . .
Channel \l . l .
EE RN
| Hl RB
H Back Gate
e

P-BiCS has “U” shaped NAND string with back gate to reduce parasitic
resistance of bottom portion. There is no diffusion between CGs. Select
gate has asymmetric source and drain structure to reduce off current.

MEMORY * CONFERENCE

A A o e 30, 2(
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STT (Spin-Torque-Transfer) RAM

e Controlled switching of free magnetic layer in a
magnetic tunnel junction using current, leading to
two distinct resistance states

Strengths
e Inherently very fast > almost as fast as DRAM fixed Laver
e Much better endurance than Flash or PCM
e Radiation-tolerant
e Materials are Back-End-Of-the-Line compatible
e Simple cell structure = reduced processing costs

Weaknesses

e Achieving low switching current/power is not easy

e BEOL temperatures can affect STT-MRAM device stack

e Resistance contrast is quite low (2-3x) - achieving tight distributions is ultra-critical
» High-temperature retention strongly affected by scaling below F~50nm

 Tradeoff between fastest switching and switching reliability

STT-MRAM

Free Layer

Barrier Layer

Access Transistor

Outlook: Strong outlook for an Embedded Non-Volatile Memory to replace/augment DRAM.

Racetrack Memory offers hope for using STT concepts to
create vertical “shift-register” of domain walls > potential

densities of 10-100 bits/F2

BloComp e 00
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Phase Change Memory at IBM Almaden

Phase-change
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Overview of
candidate device
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Phase-change RAM

e Switching between low-resistance crystalline, Phase Change Material
and high-resistance amorphous phases, controlled
through power & duration of electrical pulses

Strengths
e Mature (large-scale demos & products)
¢ Industry consensus on material > GeSbTe or GST
e Large resistance contrast - analog states for MLC
e Offers much better endurance than Flash
e Shown to be highly scalable (still works at ultra-small F) and Back-End-Of-the-Line compatible
e Can be very fast (depending on material & doping)
« High-resistance state undergoes “Ovonic threshold switching” at reasonable voltages

Weaknesses
e RESET step to high resistance requires melting > power-hungry, thermal crosstalk?
To keep switching power down = sub-lithographic feature and high-current Access Device
To fill small feature - ALD or CVD - difficult now to replace GST with a better material
Variability in small features broadens resistance distributions
* 10-year retention at elevated temperatures can be an issue - recrystallization
e Device characteristics change over time due to elemental segregation = device failure
e MLC strongly affected by relaxation of amorphous phase = “resistance drift”

insulator

Outlook: 3D Xpoint product now in early customer assessment,
motivated by density (two layers of 3-D Access Devices) —
3.5) Floceiy S if successful at S-type SCM > maybe opportunity for M-type SCM as well...

ANAlog re



Memristors
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Memristors

turned out to be incorrect for HP’s material system (TiO- )

original explanation as a “non-filamentary RRAM”

Oxygen deficiencies
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P o Voltage-controlled formation & dissipation of an oxygen-vacancy
RGSlStlve RAM (or metallic) filament through an otherwise insulating layer

Strengths
e Good retention at elevated-temperatures Top electrode
e Simple cell structure = reduced processing costs “Forming”
e Both fast and ultra-low-current switching have been demonstrated step Bottom electrode
e Some RRAM materials are Back-End-Of-the-Line compatible l

e Was a new field = high hopes for improved material concepts
e Less “gating” Intellectual Property to license l e
* Some RRAM concepts offer co-integrated NVM & Access Device
e Possibility for 3-D silo scheme like 3-D Flash

Weaknesses
e Highly immature technology — wide variation in materials hampers cross-industry learning
e Demonstrated endurance is slightly better than Flash, but lower than PCM or STT-RAM
e Switching reliability an issue, even within single devices, and read disturb can be an issue
e An initial high-voltage “forming” step is often required
e To attain low RESET switching currents, circuit must constrain current during previous SET

e Unipolar and bipolar versions — bipolar typically better in both write margins & endurance,
but then requires an unconventional bipolar-capable Access Device (silicon diode is out)

e Intra-device variability MUCH worse at low power > very few atoms in the filament
e CBRAM (metal atom filament) offers higher signal contrast than RRAM (defect filament)

Outlook: Outlook is unclear. Clear opportunities for embedded memory. Opportunity for
following 3-D Flash into Z dimension attractive, but many uncertainties remain
about prospects for reliable storage & memory products.

»
e DIOCO )
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Non-filamentary RRAM

Oxygen deficiencies

Make diffusion easy > fast writes... but poor retention.

Make diffusion hard -  great retention... but writing is slow.

- “voltage-time” dilemma
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Ferroelectrics

Q
FeRAM
» Fast, high endurance
« Imprint, fatigue > . v
» Destructive read
« Poor density

TEL- Top Electrode _J/v)

FER: Ferroelectric Film
— BEL: Bottom Electrode

FeFET on

[#]

B

« Fast, high endurance 3

glﬂﬂ nm

. . Q o
. Imprlnt,. fatigue? % 10mm %g
~—Heow-te-integrate? g ¥
Peor-tensity .2 1nm 25
E Ll

10 kV/em 10{_)k /em 1 MV/em
coercive field E .

poly-Si
|MW =2E:d;| TN gate:;-
FE-Hﬂfmﬁf
Fig 11 Scaling dilemma of the perovskite-based
0 MFIS-FET. The high E, and scalable dy: of FE-
HfO, preserve manufacturability of the gate stack.

« Also acts as a
Flash memory
- reduced endurance

drain current (a.u.)

Analod resictive neuromorohic hardware Miiller, IEDM 2013




Non-volatile memory wish-list

PCM - Need lower co$t
« ALD process for a fast, robust material
» Reliable sub-lithographic patterning

CBRAM - still need better reliability

MRAM - More resistance contrast!
* Solve tradeoffs between retention and switching current
« Solve process difficulties (temperature, etching)

Filamentary-RRAM

* need to solve few-atom switching as only path to low-power

Nonfilamentary-RRAM

* Voltage-dilemma — how to get fast switching AND good retention?

FeRAM

« HfOx results very exciting — materials work needs to lead to
more device implementations so learn what the issues might be...

»
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Back-End-Or-the-Line-cOmpatible

Non-Volatile Memory:
a fundamental “building block”
enabling a range of applications
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Ingredients of crosspoint memory

1) NVM element
« Improved FLASH

« Magnetic Spin Torque Transfer
- STT-RAM
- Magnetic Racetrack
 Phase Change RAM

 Resistive RAM

2) High-density access device (A.D.)

« 2-D — silicon transistor or diode

« 3-D - higher density per 4F2
« polysilicon diode (but <400°C processing?)
e MIEC A.D. (Mixed Ionic-Electronic Conduction)

- OTS A.D. (Ovonic Threshold Switch)
« Conductive oxide tunnel barrier A.D.

BloComp e 00
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Need for an Access Device

Apply V

* Memory Element (PCM, RRAM etc.)

&
Access Device (Selector)

Sense |

Current ‘sneak path’ problem
Access device needed In series with memory element

e Cut off current ‘sneak paths’
that lead to incorrect sensing and wasted power
e Typically diodes used as access devices
e Could also use devices with highly non-linear I-V curves

BloComp e 00
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Novel Mixed-Ionic-Electronic-Conduction (MIEC) Access DeV|ce
Strengths N '

e High enough ON currents for PCM —
cycling of PCM has been demonstrated

e Low enough OFF current for large arrays

e \ery large (>>1e10) endurance for typical
5uUA read currents

¢ \/oltage margins > 1.5V with tight
distributions - sufficient for large arrays

¢ CMP process demonstrated
¢ 512kBit arrays demonstrated w/ 100% vyield

e Scalable to <30nm CD, <12nm thickness 00001 %" 001 %' 05 %% 90 9% 99999%%%%g9099
e Capable of 15ns write, 50ns read 1uA '
e Highly stable in un-/half-select conditions Current
300nA
Weaknesses
e Maximum voltage across companion 100nA
NVM during switching must be low
(1-2V) = influences half-select condition 30nA
and thus achievable array size 10 Voltage [v]
« Endurance during NVM "5 & 05 0 05 ! 15
. . 9 | Gopalakrishnan, VLSI 2010 Shenoy, Semi. Sci. Tech. 29/104005 (2014)
programming is strongly dependent on gpenoy, vis 2011 Burr, JVST-532/040802 (2014)
programming current Burr, VLSI 2012

Narayanan, DRC & IEDM 2014,

\éirwa\r/\iL,SIIEzD(l)\’IBZOlZ J-EDS 3/423 (2015), IEEE J.ESTC&S (2016)
= 4 BioComp er Schoo il - Padilla, IEEE-TED 62/963 (2015)
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DRC 2014 — Crossbar array design using SPICE modeling

Part|ally (WL) Selected Cells Selected Cell

Total Voftage fo Switch NVM

J

Partially (BL) Selected Cells

(M-1) Unselect Columns (Bitlines)

16MbF—F=ten g g Tt 1—........4..........!........;. T T P

a\'ol'lvl\ull'u'l lq.‘lu‘dfu'n‘uﬁu"OIIUIu e

y Size

m— ADDro:ﬂmate / ;,'

Maximum Arra
&

|terat|ve model """"

"0'72" '096' '12'0 '144' '168 ']‘;gi '2"16' it
NVM Switching Voltage [v]

2.40

A) Efficient design point:
nearly all injected power
delivered to “selected” device(s)

B) Inefficient design point:
much more injected power,
which is mostly dissipated
in “unselected” devices!!




IEDM 2014 paper: compare access devices using SPICE

Circuit-Level Benchmarking of Access Devices for
Resistive Nonvolatile Memory Arrays
P. Narayanan, G. W. Burr, R. S. Shenoy, K. Virwani, and B. Kurdi

S0uA A '

- I ,\ Array Size = 1Mb |

uhs 1 1.5 > 25\,
H

- Below 1mW contours shown,
parallel writes are still a viable option...

».
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Paths towards SCM Device
Availability
_ Cos$t
SN= Capital |
iInvestment Applications ' .
NAND —>-2_NAND | Future NAND applications
(consumer devices, etc.)
This path ne
longeL MY .......coio e, ‘IIIIIIIIIIII.‘
1-10us : N g
. : Embedded Storage :_\ = S-type SCM =
emerging NVM (low density, »: (high-density, =
RRAM? PCM? - slower ON-chip storage) : - near-ON-line storage) .
CBRAM? e " Ceammmmmsmmnna®
e ‘ R II LI
<<lus . Embedded )+ M-type SCM :
emerging NVM [ : Non-Volatile Memory iI5)=  (high-density,
STT-RAM? CBRAM? ' (low-density, fast ON-chip NvM) = "t L AN
PCM??/RRAM?? e irarerere s rnnas’ : *¢snnmnmnnnnnn?
* ON-chip using 3-D packaging
DRAM . Future DRAM
(working memory, etc.)
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30 XPoint™ TECHNOLOGY

SRAM
Latency: 1X DRAM

Size of Data: 1X atericy: ~10X
. - -
Size of Data: ~100X 3D XPoint

Latency: ~100X
Size of Data: ~1,000X

——— NAND
TR ™ \q& Latency: ~100,000X

Size of Data: ~1,000X
HDD

Size of Data: ~10,000 X

/ 0
44
L.

-

I

‘ A , x Latency: ~10 MillionX
N

\\ — .

intel)

‘lechnology claims are based on comparisons of latency, density and write cycling metrics amongst memory technologies recorded on published specifications of (l >
in-market memory products against internal Intel specifications.

3D-XPoint believed to be PCM + OTS

Phase-Change Memory + Ovonic Threshold Switch

30 BioComp Summer School: G. W. Burr
Analog resistive heuromorphic hardware IBM Research — Almaden

June 30, 2017



MIEC+NVM: a fundamental,
BEOL-compatible “building block”

L]
----
.lllllllll-"

TEC

e pCM
e T RRAM
Access ~ CBRAM
Device
MRAM

Quite" dense (>1bit/4F?)

Programmable e-fuses
(FPGAs, reconfigurable computing

Embedded storage

(Automotive)

Embedded memory
(Low-power, mobile computing)

Standalone M-class SCM
(Hybrid memory)

Artificial .
0P 5P 0P NP NP P NP NP NP N6 Ny P P Synalgsaes Computatlon_ln_Memory
00 bt 0 Ty W (Non-VN (Distributed computing)
Frfiwah o m e oo gy Computing)  standalone

S-class SCM
(Enhanced Flash)




Outline for Part 11

« Motivation
 Look to the brain now that Dennard scaling is exhausted

* The Brain
* What do we like about how the brain does computing?
* (What DON'T we like about how the brain does computing?)

» The Computer Scientists
» What are the computer scientists up to?
» What might they be missing out on?

» Where can hardware (devices, circuits, systems) play a role, in ...
« Accelerating Deep Learning
 TrueNorth, NVM-for-Backprop-Training

* Transcending Deep Learning
« Towards Brain-like energy-efficiency & “Machine Intelligence”

 Applications & outlook

».
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“Motivation:” Brains & light bulbs




Motivation: towards "Brain-like” computation

Von Neumann NON Von Neumann
computation computation
“brain-like” %
“ends” of
computation
(“what”)

conventional
computers
) |

>
(11 1) : (11 u(( -I H ”
means” of computation (“how”) brain-like

».
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Von Neumann architecture

A "memory" delivers “operations” & “operands”
to a dedicated "central processing unit"

50 years of amazing progress thanks to E u
“Moore’s Law” (more transistors per chip)!

CPU Memory

10’ | 2 e Von Neumann
16° - L . “Bottleneck”
| But clock frequencies are
A — no longer increasing...
10" (SpocnT) . .
; . and Chip power has hit
10| a ceiling.
10° | w7 Since this means that
101; ‘ # 3, uniber o Single-thread
b o e oM . performance is not
L B e e o S N : \ increasing....
1975 1980 1985 1990 1995 2000 2005 2010 2015 .. the only path to better
Orginaldata colecied and poted by M. Horowz, . Labonte, O. Shachem, K. Okikoun, L. Hammond and C. Batien system performance Is

Dotted line extrapolations by C. Moore .
_ adding more Cores.
www.hpcwire.com/2013/12/11/hpc-progress-free-lunch/#/

bioComp 00
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Dennard scaling o V0129V ® 5.7 WIRING 3

t=/ct

The real driver behind “Moore’s Law”
(more transistors per chip)

y GATE

T | Tl v i O
~ . source |- s

Bob |
Dennard

J;—L'a—’ T
i . p substrate, doping' a'N. Xd/a
We added more transistors by making them smaller... _
Td \ , ...but those “scaled” transistors

.7 Transistors

(thousands) were actually faster AND
required less power!! [

s sl Unfortunately, Dennard

il scaling stopped working

~ about 8-10 years ago...

-~ Typical Power
:Vn::, Gate oxide scaling (t,,) problems
Cores - “high-K metal gate”
L T B I S B A Voltage scaling problems

1975 1980 1985 1990 1995 2000 2005 2010 2015 -2 “new CMOS switch”

Original data collected and piotted by M. Horowitz. F. Labonte, O. Shacham, K. Olukotun, L. Hammondand C. Baten O |@ akage pr0b|e ms

Dotted line extrapolations by C. Moore

[1] IEEE Trans. Electr. Dev., ED-31(4), 452 (1984) - “dark silicon”

»
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Adjusting our assumptions about computation

Conventional computing requires that ALL the devices work right.

This is getting difficult to guarantee across billions of devices
as voltages & device-sizes scale down.

Several recent trends in computing try to modify this assumption in different ways...

1) Quantum computing

* much more sensitive to noise (need low temperatures)
» ...but much more functionality PER device (qubit)

2) Approximate/Stochastic computing — redundancy through design

3) Brain-inspired computing — redundancy through learning

a. Deep Neural Networks
* Apply “too many” resources to the problem yet get a result
* |t can be “OK” if some of the resources are unreliable

b. Even-more-Neuromorphic computing = “machine intelligence”
« Use sparsity in time & space to reduce overall computing power

».
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Brain as an architecture for non-Von Neumann computation

Some of the brain’s energy efficiency comes from the biochemistry 100 billion neurons,

involved in signal transmission. interconnected by
100 trillion synapses

dendrites nucleus N But the
euron network architecture
| | is also incredibly efficient:

daxon .
only a small fraction of

/ axon ending neurons are active

\ \ at any given instant.

/

myelin sheath

VESICLES

AXON &
a::- .:' ::l » ::- ::n
CHIE

cell body

In nature - complexity is “free” ...

... but size, weight & power

are highly constrained DENDRITE

o o@ .
NEUROTRANSMITTERS /___&_
So the distributed RECEPTORS

computational architecture Synapsé—p

of the brain evolved to
maximize energy efficiency
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About the brain

- What do we like about how the brain does computing?
* Low power
* Massive parallelism
* many processing elements (lots of neurons)
* massive interconnectivity (large fanout: 1-10k synapses PER neuron)
* Sparse Distributed Representations = massive capacity

[ -’
o pbloComp 00
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ANAlOg re e heuromorp araware > c dC




A

Sparse Distributed Representations

« Dense Representations
Few bits (8-128) Example: ASCII “m” =01101101
Efficient but no semantic meaning

« Sparse Representations
Many bits (thousands), few 1’s, mostly O’s
Appears inefficient but evolution has picked it!
Each bit has semantic meaning

« Example of SDR uses: Union of Properties
Color 00000010001000000001100000000100  (‘red)
Shape 00001000100010100000100000000000 (‘'sphere’)

Union 00001010101010100001100000000100 (‘red sphere’)
q "'—‘\% »

—

Spatial firing patterns of 8 place cells recorded
from the CA1 layer of a rat. The rat ran back and
forth along an elevated track, stopping at each
end to eat a small food reward. Dots indicate
positions where action potentials were recorded,
with color indicating which neuron emitted that
action potential.

en.wikipedia.org/wiki/Place_cell
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About the brain (continued)

- What do we like about how the brain does computing?
* Low power
* Massive parallelism
* many processing elements (lots of neurons)
* massive interconnectivity (large fanout: 1-10k synapses PER neuron)
* Sparse Distributed Representations = massive capacity
* Time is really important
* Computing despite ...
* noise
* unreliable & stochastic components
* Makes rapid decisions despite uncertainty & incomplete information

- What don’t we like about Von-Neumann architecture?
* Bringing data TO processing is inefficient for data-centric workloads
* would there be benefits by doing processing AT the data??
* System has to be perfect (100% yield)
* more and more difficult as scaling continues
e are there ways to build systems that are still useful at 90-99% vyield??
* Dependence on software programming — labor-intensive = expensive!

BloComp e 00
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Brain-inspired computing methods

The brain exhibits ...

Electrochemical signal transmission
Hierarchy (multiple layers)

Local inhibition

Stochastic behavior

Lots of neurons Recurrent connectivity

Lots of synapses PER neuron Local AND remote connectivity

Sparse-distributed representations
Hebbian synaptic plasticity (cells that fire together, wire together)
Integrate-and-fire in space (many spikes arriving in a vicinity)

Integrate-and-fire in time (many spikes over time)
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What are the CS folks doing/ignoring?

- What are the computer scientists up to?
* Design-based Big Data Analytics — not “neural”
* Machine Learning
* Deep Neural Networks
* pros & cons here
* Transcending DNN — LSTM, Recurrent NN, Reinforcement Learning
* Machine Intelligence

BloComp e 00
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A simple taxonomy of Cognitive Computing
Other

Machine Learning Deep—Neura_\I Netwo_rks Mac_:hlne
(Support Vector Machines, k-means, (Deep Machine Learning Intelllgence
knowledge-graphs, etc.) w/ backpropagation)
| Y : ’ v 1
Machine Learning: solving a specific task on Brain-inspired Computing

labeled data by defining & optimizing an objective function

mature,

mature, scalable. not yet mature.
not as scalable.

learn efficiently w/
unlabeled,
time-dependent data

requires lots of

same labelled, static data.

more explainable & ... can’t readily explain
user-adjustable. its decisions.




IBM Watson @ = WATSON

Combination of natural language processing and “design-based” Big Data analytics

Jan 2011 — win at “Jeopardy!” 2014 — IBM Watson group

& o ] S Engagement Advisor:

\‘ - i , f_’ » more meaningful interactions with customers
@ g = PENSER

$300,000 [ S 18 200,000 [B¥ Explorer:

» make sense of big data, providing

WO
Who 15 Stoker? B
4

A B k" Az, context, trends and relationships

$ |, 000 45600

Discovery Advisor:
e accelerate research

e 'S i 2 B i
Health care: Helping doctors identify treatment options

Finance: Helping planners recommend better investments
Transform customer experiences, financial analysis, risk management & compliance

Retail: Helping retailers transform customer relationships
Transform the shopping experience, merchandising and supply networks, sales operations

Public sector: Helping government help its citizens

Citizens’ experience, policy & performance, public security

www.ibm.com/smarterplanet/us/en/ibmwatson/index.htmi

BioComp
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Cognitive Computing based on Deep Neural Networks

Systems that learn at scale, reason with purpose, and interact with humans naturally.

Image recognition:

helmet

motorcycle

S peeC h re Cog N |t| on: image-net.org/challenges/LSVRC/2014/

Machine translation:

».
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Cognitive Computing based on Deep Neural Networks

Systems that learn at scale, reason with purpose, and interact with humans naturally.

- Impact on enterprise clients (IBM Watson) AND on consumers...

Image recognition:

Speech recognition:

Machine translation:

bioComp
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Cognitive Computing based on Deep Neural Networks

Systems that learn at scale, reason with purpose, and interact with humans naturally.

- Impact on enterprise clients (IBM Watson) AND on consumers...

Image recognition:

Speech recognition:

Pre-2016: “One is not what is for what he writes,
but for what he has read.”

Machine translation: Unonoeslo que es porlo que  You are not what you write, but
escribe, sino por lo que ha leido what you have read

G462 80l M= A0| OtLICH S
MOl &2 A LILEH
www.nytimes.com/2016/12/14/magazine/the-great-ai-awakening.htmi

». »
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Deep Neural Networks

1) Input data (images,
raw speech data, etc.)
input to neural network

“MNIST” database

~1998
- check-reading ATMs

o~ Synaptic weight

~

Fully trained network

A Deep Neural Network contains

Hardware opportunity: Efficient, low-power depl

Training:

UN-trained network

e

<€

multiple layers, ...
each layer containing many neurons, ...
each neuron driven through many
synaptic weight connections
from other neurons.

2) classification results
compared to labels

3) corrections
“backpropagated”
& all weights updated

Problem: It can
take WEEKS to
train these
networks, even
with many GPUs.

“This is a seven.”

Hardware opportunity: Train big networks FASTER and at LOWER POWER.

ANAlog re e heuromo

A ace




Artificial Neural Networks

A brief history: Input
7N
1943 — McCullough & Pitts \_
- mathematical representation of a neural network N \U,u]]m
late 1940s — Hebbian learning . )
- “cells that fire together, wire together” | x S \R—f”y“‘"-----"’
X X 6] o r/a-——-».\\ - \
1958 — Perceptron network L) )
1969 — Minsky & Pappert paper 00 0 ’)‘():( /,,__x/
- l1-layer perceptron can’t solve XOR > )
N

1986 — Rumelhart & Hinton popularize backpropagation

1990’s — multilayer backprop. is too slow
- rise of statistical machine learning (support vector machines, etc.)

2006 — “deep” neural networks — layer-by-layer “greedy” training
late 2000’s — availabilty of powerful GPUs (Graphics Processing Unit)

2012 — “ImageNet Classification with Deep Convolutional Neural Networks,”
Krizhevsky, Sutskever, and Hinton, NIPS 2012

».
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Artificial N\

b3
. . 1 P "
x’. - T T’ 'y ey
1 - . - 1
« Y\,

2006 — “deep’” neural networks — layer-by-layer “greedy” training

late 2000’s — availabilty of powerful GPUs (Graphics Processing Unit)

2012 — “ImageNet Classification with Deep Convolutional Neural Networks,’
Krizhevsky, Sutskever, and Hinton, NIPS 2012

».
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Deep Neural Networks

e Strong impact on
applications such as...
- Image recognition
. 1 billion parameters

- Speech recognition
. 40 million parameters

* (compare MNIST dataset)
. 100 thousand parameters

Step 1 - Training

— Difficult task (Optimization)

— Modify adjustable parameters
(weights) in the model to match
the input-output pairs for the
training data.

— Takes weeks on many cores

BloComp e 00
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Traditional Techniques

15.3
i I i 8

Error rate (top 5)

ImageNet Competition Top-5 Error

Deep NNs

73ﬁ

2012 2013 2014

Step 2 - Execution

— Easier task (Forward evaluation)

— Given the input, generate the output
(e.g., “classify it") using the trained
model parameters (weights).

— Takes milliseconds on a single core




What is backpropagation?
1) Forward #

propagation 528
neurons 10
output
neurons
non 9 y1
> Y2,
|
NN,resuIts
A
8 2 Vi




What is backpropagation?
1) Forward ﬁ

propagation 528

neurons 250 125 10
hidden hidden output

neurons NEUrons neurons

2V
s

(<]
o NN results

-
® >%W

=2 Y10

0‘6 o)

J Cropped

(22x24
™ pixel)
MNIST

images




What is backpropagation?

2) Compare
528 against
il L iz 19, correct
0}
neurons neurons  neurons an?_v‘v_‘er
/ﬁ Yi— 91
@ Y2~ 92
-m Hr—’
. (o] =)
» o o NN results
) \ ® o 5 ,
2 \ ~
= Crgg%ed r—HYK_ 9.
i _MFNIST
images
n Y10~ 910
81 h 3) Back-
propagation

“learning rate”




Deep Neural Networks

Uses PART of what the brain exhibits ..

o SOSURTETN .
Hierarchy (multiple layers)
Foreaiirri
Stochastic behavior (RBMs)

Lots of neurons Recurrent connectivity (LSTMs, etc.)

.

Lots of synapses PER neuron Local ANB-remrete connectivity

. TR I :

Hobbian-synaptic plasticity (co!lcthat firctogetherwirctogethc )
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“Deep Learning” on GPUs

1) Input data (images,
raw speech data, etc.)
input to neural network

)
5

@ .

— Synaptic weight
N1 M1 -

o

Combine -
100-1000 : V- iy Py

input vectors o
into an : 3 > gXC|tat|on
input matrix . ... multiply by current II’IFO next
("mini-batch”) weight matrix, “-.._ hidden
v "~.4 neurons

X p—
BloComp = 00

ANAlog re e heuromorp

2) classification results
compared to labels

3) corrections
“backpropagated”
& all weights updated

All steps can be
mapped to
matrix multiplications

—> can run very fast
on GPUs




Computation needed: “Multiply-accumulate”

With a GPU,
matrix-multiplication is
fast & parallel...

... but X and W values must arrive from DRAM,
and new Y values sent back to DRAM

».
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Reduced precision for Deep Neural Networks

Round to nearest, WL = 16

S | | | I |

« If you simply clip all the
numbers during ANN training,
you will lose out because your
weight updates get smaller
than the LSB you're using

Test error(%)

O 5 10 15 20 25
« Simple stochastic rounding Training epoch
at this LSB during ANN training can

30

] 4 Stochatic rounding, WL = 16
retain ALL the performance but [ 7 r n r n

with many fewer bits of precision

Test error(%)

@0 5 10 15 20 25

S. Gupta et al. "Deep learning with limited numerical precision.” arXiv:1502.02551 (2015).

ANAlog re e heuromorp araware
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Reduced precision for Deep Neural Networks

Google TPU

v:—)l
I )
¥ b

|

Partial Sums

—— 30D

Warp Scheduler (32 thread/clk) > —> >
Dispatch Unit (32 thread/clk) ] ] ]

I

Register File (16,384 x 32-bit) ed in the slot

FP64 INT INT [FP32 FP32
FP64 INT INT [FP32 FP32
FP64 INT INT [FP32 FP32

FP64 INT INT [FP32 FP32 TENSOR TENSOR

FPe4  INT INT FPs2Fpsz CORE  CORE

Nvidia Volta GPU

FP64 INT INT FP32 FP32

FP64 INT INT FP32 FP32

LD/ LD/ LD/ LD/ LD/ LD/
ST ST ST ST ST ST

8bit INTs
for
Forward
Inference

— Done

Figure 4. Systolic data flow of the Matrix Multiply Unit. Software
e Gen3 x16. has the illusion that each 256B input is read at once, and they instantly
update one location of each of 256 accumulator RAMs.

arxiv.org/abs/1704.04760

wccftech.com/nvidia-volta-gv100-gpu-tesla-v100-architecture-specifications-deep-dive/

5(

- = — = : 0 ader
AU V LITU Ul J Al Uvvd




Computation needed: “Multiply-accumulate”

With a GPU,
matrix-multiplication is
fast & parallel...

... but X and W values must arrive from DRAM,
and new Y values sent back to DRAM




NVM (Non-Volatile Memory): usually for storing digital data (0s and 1s)

NVM technologies include:
MRAM (Magnetic RAM) Analog ...
PCM (Phase-Change Memory) resistors /" \S
RRAM (Resistance RAM)

_ _ Vread
Like conventional memory Address >

(SRAM/DRAM/H&SI’]), decoder

an NVM is addressed .

one row at a time,
to retrieve previously-stored
digital data.

Sense-Amplifiers
(analog current - 0Os and 15s)

BloComp e 00
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Multiply-accumulate with NVM: computed at the data, by physics

1) Different peripheral circuitry

2) Weights w - conductances G* G~

(Ohm's Law: V=R > | = gy)  Conductance/

3) Apply “x” voltages to every row
(Kirchhoff's Current Law - X 1)

4) Analog measurement

ij ——




SYNAPSE project — the TrueNorth chip

Modular network of lightweight cores
—> co-located computation, memory, & communication

Ultra-low-power execution of
pre-trained neural networks

Neuron Nouron Neuron
Communication B  Communication B Communication
Neuron Neuron Neuron
Communication B Communication B  Communication
Synapses Synapses Synapses
Communication B Communication B  Communication

Merolla et al., Science, 345(6197), 668 (2014).
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SyNAPSE project — the TrueNorth chip

Structural Functional Physical
input active synapse
?;ﬁ?ﬁe Scheduler
— Memo
D I Controller r y
Q | inputs outputs ¢ I:_ S
S : . ] =
) 2 ° - 3
M _
- ’- h Neuron
; L
| Router ||
axons neurons ! & |
' : outpu
a d spike d

v vvYy

1 4096 cores
1 million neurons
| 256 million synapses
\
|
\
|

Chip

vV vYVy

D000 *EO SIS *iso 0g

U000 + o v]e]e] *o--ooo

vVvYyY

v

€ packet 'spike” ) Packet Router

Merolla et al., Science, 345(6197), 668 (2014).
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« Temperature,
, in Celsius

100
MHz

FPGA

TrueNorth
in socket

TrueNorth: 70mW total chip power, running a typical recurrent network at real-time
- 26pJ energy per synaptic event (128 synapses per neuron spiking at 20Hz)

- modern general-purpose microprocessor, optimized simulator (Compass) running the same network:
consumes 176,000x more energy per event

- state-of-the-art multiprocessor neuromorphic system (SpiNNaker), 48 chips each w/18 microprocessors, similar network:
consumes 769x more energy per event, requires 11.4x more silicon area

Merolla et al., Science, 345(6197), 668 (2014).




SYNAPSE project — system variants

=
4 N
v

| )
»,

Mobile development platform
Miniature Form-Factor

Low Power, Low Weight

< 100g Real Time, User Friendly

70mm

125mm

“SYNAPSE University”

1 week, on-site hands-on training

Ben Shaw
shawbe@us.ibm.com




IBM TrueNorth/SyNAPSE chip

SyNAPSE
Supercomputer

Single Chip 16 Chip Board

Each TrueNorth Chip Board with 16 chips Rack with 16 boards
* 4096 “cores” « 65536 cores 1 million cores

(of 256 axons x 256 neurons) « 16 million neurons « 256 million neurons
* 1 million neurons « 4 billion synapses « 64 billion synapses

« 256 million synapses
5.4 billion transistors

+ Z0mW power Only performs
forward evaluation of ANNs —
not training.

Very power efficient!!

».
BioComp s 00
2\ M oOoceo
Analog re e neuromorp ardware : - Almaae




NVM-for-Machine-Learning

Unlike TrueNorth: learning performed on-chip

For TrueNorth, power is everything

For NVM-for-ML, need speed-up over GPUs

Research challenges

1) What do we really need from the NVM devices?

« Recap of our JEDM2014, IEEE-TED2015 work
> Need competitive ML performance

2) What are the potential benefits, in speed & power?
« Speed - Parallelism = Area-efficient circuits

BloComp e 00
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Selector device .,

Like TrueNorth: compute AT the weight data Conductance

(&

pairs....,




Published work on “what do we need from the NVM?”
[1] IEDM 2014

Experimental demonstration and tolerancing of a large-scale neural network
(165,000 synapses), using phase-change memory as the synaptic weight element
G.W. Burr, R.M. Shelby, C.di Nolfo, J. W.Jang*, R.S. Shenoy. P.Narayanan. K. Virwani, E.U. Giacometti, B. Kurdi, and H. Hwang*

-> First large-scale mixed hardware-software demonstration + tolerancing
> ~82% accuracy on MNIST with 5000 examples

Introduced...
 “crossbar-compatible” weight-update
« “"G-diamonds” — represent distribution of synaptic-states graphically

BloComp e 00
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Simulated accuracy (%]

100 (Fig. 6) o

(o}
o

80+

| Crossbar-compatlble-
weight update (Fig. 7|

70l

99.6

60 &

g9l Conventional

50 weight

97
40

aCC

\\Te-StII{*

uracies

oo

20

10§m“ 0 2 4 6 8 10_ 1% 14 16 18 20|
Training epoch
% 5 10 15 20

Weight update
rule - not a
problem!

[1] G. W. Burr, R. M. Shelby, et al.,
IEDM Technical Digest, 29.5,
(2014).




Conventional
(“CS professor”)

weight update

Neuron value
100 150
\

1III. IIIIII--I -II-I.I“—_:#
T TR

». -
bioComp 00
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Crossbar-compatible
weight update

Neuron fire ... I\IO “ 1 puls? L2 pLgIsesi .3 |(:>ulses) e i&LL
value pulses  (timesiot A AB AB,C pulses
- A
* 8 L' A Y A Y
100 150

100

10

Programming
pulses

= affecting

NVM

I occurrences during simulation

=¥

uo1309.100 pajebedod-oeg

1 pulse
(timeslot B )

2 pulses
(AC)

3 pulses
(A,B,C)

ALL
4 pulses




NVM imperfections

\ Devices Stuck-ON
NonlineariWi G Asymmetry  Abrupt RESET in

increasing G different

AG-per-pulse @ low-G
P Herent Fom Phase-Change Memory
from AG-per-pulse @ . AG-per-pulse for

high-G) Va |‘y| ng decreasing G, e.g.,

abrupt RESET in PCM) =) Significant asymmetry

Sto%hasticity

(erroneous weight updates
are possible)

Increasing Decreasing
G-response G-response
Dead
devices _ # pulses # pulses
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How do NVM imperfections cause trouble?
Any NN tends to “dither” many of its
weights, with no long-term effect ...
Weight
TN NN

# training examples

p S N W S

...UNLESS change is much “easier” in
one direction (often > low weights)

Weight

Low weights = small §; corrections - NO weights get updated (“freeze-out”)

»
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IEDM 2014: “"G-diamond” concept

 Graphical method for
understanding issues
Introduced by
nonlinearity &
asymmetry

Weight

[1] G. W. Burr, R. M. Shelby, et al., JEDM Technical Digest, 29.5, (2014).




IEDM 2014: Occasional RESET for PCM

* requires serial scan of
conductance values

- best to RESET only
Infrequently

* requires 2 Full RESETs
followed by iterative SET

* synaptic weight after RESET
NOT same as before
- inherently inaccurate

[1] G. W. Burr, R. M. Shelby, et al., JEDM Technical Digest, 29.5, (2014).




Experimental NN implementation using PCM

“Disru ptor” Array Diagnostic Monitor
- 512 x 1024 array

Read mode Write mode

Master Bitline selected Ha rdwa Fre we had

PCM

Row address

selects wordline —I

500 x 661 PCM = |

(2 PCM/synapse
* 164,885 synapses) _
+ 730 unused PCM IBM/Macronix
PCRAM project:
Chung Lam,

Matt BrightSky

».
BioComp s 00
2\ M oOoceo
Analog re e neuromorp ardware : - Almaae

by column address LE e




Experimental NN implementation using PCM

... was not the same as the
hardware we wanted ...




Experimental NN implementation using PCM
.. but we wanted to do an experiment

Read PCM conductances

that told us what performance we
migh expect with this target hardware... ‘

1

- weights
® :
w oW w oW Next MNIST example:
@ ------------------ “Forward” neuron
oW W computation in software
Q W w W W 1’
°o “Backpropagation”
o) in software
O T b Write PCM with
w o ow wo W |dent|cal pulses
® -
Y Y All weight operations

\@D/ 0co0o0 \@D/ on PCM




Accuracy results from IEDM 2014

» Reasonably good accuracy using PCM (82.9% generalization on “unseen” MNIST test set)
5100

‘>)~ 90 ;
© sol EXperiment.

(2 PCM/synapse * 164,885 synapses)

= ) i
Q /0 Matched simulation-1 Measure pcw
|| imperfections

O
60
2 | B Rt U 2) Model in
@ 50 - || __NN simulator

SE’ - || Junwoo Jang
30 ¢ || Prof. H. Hwang
0 2 | ]| (POSTECH)

20]

5 _ 10 15 |
Tra INi ng, EPOCh '(eachl 5,000 examples)
0 1 2

[1] G. W. Burr, R. M. Shelby, et al., JEDM Technical Digest, 29.5, (2014).
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IEDM 2014: overall results

v Reasonably good accuracy on MNIST dataset using PCM
(with 5,000 examples > 82.9% generalization on “unseen” test set)

v Crossbar-compatible weight-update rule
v "G diamond” graphical concept

v Doing inaccurate & infrequent “"Occasional RESET” should work

« Extensive tolerancing enabled by matching simulation to experiment

« In general, we found NVM-based NN to be ...
 highly resilient to random effects (NVM variability, yield, and stochasticity)

 highly sensitive to “gradient” effects that act to steer all synaptic weights

 Low “learning-rate” - high accuracy & low training energy

[1] G. W. Burr, R. M. Shelby, et al., JEDM Technical Digest, 29.5, (2014).
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IEDM 2014: overall results

v Reasonably good accuracy on MNIST dataset using PCM
(with 5,000 examples > 82.9% generalization on “unseen” test set)

v,
/Problem! |l \

MNIST dates from ~1998
- it's now considered a “minor-league” ML problem!

We MUST get to competitive performance numbers:

~94% w/ 5,000 examples
97-98% w/ 60,000 examples /Z

 Low “learning-rate” - high accuracy & low training energy

[1] G. W. Burr, R. M. Shelby, et al., JEDM Technical Digest, 29.5, (2014).

BloComp e 00
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Published work on “what do we need from the NVM?”

[2] Invited paper in IEEE-TED (v62(11), 3498 (2015).)

- Showed that high accuracy
(~94% w/ 5,000 examples,
97-98% w/ 60,000 examples)

is possible — NVM just needs a linear
conductance response w/ small steps

Conductance

# pulses

Vv

ANalog re e heuromorp araware

Experimental Demonstration and Tolerancing of a
Large-Scale Neural Network (165000 Synapses)
Using Phase-Change Memory as the
Synaptic Weight Element

Geoffrey W. Burr, Semior Member, IEEE, Robert M. Shelby, Severin Sidler, Carmelo di Nolfo, Junwoo Jang,
E. Rohit 8. Shenoy, Member, IEEE, Pritich Narayanan, Member, IEEE,
. Bulent N. Kurdi,

Irem Boybat, Smdent Member, IE

Kumar Virwani, Member, [EEE, Emanucle U. Giacor
and Hyunsang Hwang, Member, IE

Abstroci—Using two phase-change memory  devices per
synapee, @ three-layer perceptron network with 164555 cynapses

is trained on o subset (S examples) of the MNIST database
of handwritien digits using a backpropugation variant suitable
for momvolatile memory (NVM) + selector crossbar an
‘obtaining a training (generalization) accurscy of §2.2% l!lﬂ‘l -
Using  newral network simulator matched to the experimental
demonstrator, evtensive wlerancing is performed with respect
o NVM variability, yiekl, and the stochasticity, lincarity, and
asymmetry of the NVM-conductance response. We show that
@ bidirectional NVM with a symmetric, Im:ﬂr eonductance
respanse of high dynamic range i capable of delivering the same

High clasification scuracies an this problem w3 comentional,
software-based implementation of this same netw

Indes Terms— Artificial neural networks, Machine learn-
img. Mubilayer perceptrons, Nomwlatile memory, Phase change

memory.

1. INTRODUCTION

ENSE arrays of nonvolatile memory (NVM) and selac-
Dlnr device pairs (Fig. 1) can imglement neuro-inspired
non-Von Neumann computing [1], [2], using pairs [2] of
NVM devices as programmable (plastic) bigolar synapses.

Manuscript mosived May 4 2015 mvissd May 17, 2015; accepied
May 73, 215 Duse of pebicaion July T, M15; daie of comm version
Ociober’ X, 2015, The mveew of this paper wis amusged by Editor
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dmace pairs.

Work 1o dale has emphasized the spike-timing-dependent-
jplasticity (STDP) algorithm [1], [2], motivated by synaptic
measurements in real brains However, experimental NVM
demanstrations have been limited in size (=100 synapses).
and few results have reported quantitative performance metrics
such as classification accuracy. Worse yet. it has been difficult
in be sure whether the relatively poor metrics reported to
date might be due to immaturities or inefficiencies in the
STDP learning algorithm (as it is cumrently implemented), or
if these results are truly reflective of problems introduced by
imperfections in the NVM devices.

Unlike STDP, backpropagation is a widely used,
well-studied method 0 training  artificial  neusal
networks (NNs), offering  benchmarkable performance
on datasets such as handwritten digits (MNIST) [3].
Although proposed earlier, it gained great popularity in the
19805 [3], [4], and with the advent of praphics processor
units (GPUs), backpropagation now dominates the NN field.
In this paper, we use backpropagation 10 trin a relatively
simple multilayer perceptron network (Fig. 2). During forward
evaluation of this network, each layer's inputs (x,) drive the
next layer's nearons through a weight ay and & nonlinearity
F() (Fig. 21 Supervised learning occurs (Fig. 3) by then
backpropagating the error term 4 to adjust each weight u.
A three-layer network is capable of accuracies, on

fracy




IEEE-TED 2015: what we need from NVM
We showed that an “ideal” bi-directional NVM with a linear G-response
of high dynamic range can provide
the full performance available from the algorithm

100

'Train'in éet '
9 197%
(ﬁﬂrllllll:}
/ o 9{40/}0
I Linear, |
90 unbounded,
5 /4 Test set Ssymmetric Low
(] Fully bidirectional - dynamic range

Linear, bounded, symmetric 0
: High

dynamic range

oo
<

Dynamic range

A (# of pulses needed to move from G, to G,..) :

5 10 20 50 100 200 500
[2] G. W. Burr, R. M. Shelby, et al., JEEE Trans. Electr. Dev., 62(11), 3498-3507 (2015).
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“Local Gains” technique for non-ideal-NVM devices

New— - |
technique

on training set
on test set

—
o
o

N 0 WO
o o O

o)
o

Fig. 19i

on training set
on test set

w b
o o

Carmelo di Nolfo
Irem Boybat

_ N
o O

Simulated accuracy (%]
S

o

0.1 1 10
Learning rate
This technique...
* reduces need to tune “learning rate” precisely
 iImproves performance (suppresses synapses that “dither”)
* reduces power consumption
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Published work on “what do we need from the NVM?”

[3] Invited talk @IEDM 2015 (Neuromorphic Focus Session)

Large-scale neural networks implemented with non-volatile memory as the
synaptic weight element: comparative performance analysis (accuracy, speed, and power)

G.W.Burr, P.Narayanan, R.M. Shelby, S. Sidler, I. Boybat, C.di Nolfo, and Y. Leblebicif

- showed prospects for speedup (up to 25x) and lower power (100x to 3000x)

».
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Motivation: Need to Minimize Circuit Sharing (IEDM15)

Shown prospects for 2-3 orders-of-magnitude speedup
and 120-2850x lower power

These speed benefits require minimal circuit sharing, C
Cg neurons share same circuitry
A

_Training Training power @_EL _“:‘I . i\_":lL _":lL B
tlme GPU ........... : 100W W_ w_ W_
1msec | (Pe" exemple) PCM (conservative) @
................ | < |<
{110W @ W-l_- V- AN AN
\ ® G ’ G ;
100usec \ . 4 ® ;
ot i Q: - | wE
& o N 1100mw W WY » W
10usec ¢ @ + = + - see + _
PCM (aggressive) O C<-wide multiplex
- : ' - _—10mw —S ' J\
1 2 4 8 16

r v N
Cs(urcwtsharlng) f](t)dt 9C |

J L

Design of highly area-efficient circuits is essential

-> read and write of many synaptic bitlines (& wordlines) in parallel quick A-to-D

Tradeoff Circuit Complexity against Device and Algorithm Requirements

ISCAS 2017: Reducing Circuit Design Complexity for Neuromorphic Machine Learning Systems
based on Non-Volatile Memory Arrays

BloComp e 00 5 0
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NVM benefits in speed & power vs. GPU

These initial, “back-of-the-envelope” calculations suggest up to 25X speedup
and 120-2850x lower power Machine Learning than GPUs

. - 20.3x 26.5x
LX
Tralr]lng o 5.9x 179 3.58x
time 212X g 15x 0.49x 0.89x X
(per example)
Imsec ! PCM (conservative) ! - L - _l'
300usec | o ‘:"“—=—=—____ﬁ_%_ o |
i _— . e i
100usec - GPU PCM (aggressive)
30usec |- ¢ e — T -
10usec ' ' ' ' ’
Network: #1 #2 #3 #4 #5
7 layers 7 layers 4 Jayers 7 layers 4 |ayers
71.7e6 synapses 36e6 synapses 52eb synapses 450e6 synapses 485e6 synapses
51 GB/sec (24%) 84 GB/sec (34%) 99 GB/sec (40%) 250 GB/sec (100%) 250 GB/sec (100%)
768 GFLOPS (14%) 1136 GFLOPS (25%) 1447 GFLOPS (32%) 4,591 GFLOPS (100%) 4,591 GFLOPS (100%)
100W - é_ ,,,,,,,,,, : —ﬁ ................ . = L 4
10w GPU -
1WH PCM (aggressive)_ L = - = J i
100mW ———— ———— ¢ "_:__F_,__,_ *_;__f_ra |
10mwWH ‘_A______a___ro—————ﬂ———__.# PCM (conservative)
| | | |
Training 2,320 620x 890x

power

B [3] G. W. Burr, P. Narayanan, et al. (invited), JEDM 2015, T4.4 (2015).




Target: chip for NVM-for-Machine-Learning acceleration

3-year goal: decide if it even makes sense to start designing this chip...

Example | i | |
data IN = = = | Shared circuitry
| i | ‘ -
(T T T
Example l N V M
labels IN = = = uweSt” array
h \i h side l Every
RRTRR T column
| | I— l circuitry

Inferred
classifi-
cations

OUT

Support Hnmimmy

circuitry %
. Support’_

circuitry "South” side
|
Weight t
. |
overrides i
T
_

IN Tnnmmn I

| | | | i i |
Updated E E L E h E
weights : I . [T : i . (T I 2 (] : (T

IE===

T LA LT

OuUT

[8] P. Narayanan, A. Fumarola, et al., IBM J. Res. Dev., to appear (2017).
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Our routing is NOT point-to-point

“Route spikes to the right axons”  “Copy to shadow copies of same set of somas”




The business case for such a system (vs. a GPU)

/Low Power

(inherent in the physics,
but possible to lose in the
engineering...)

Still of interest for power-
constrained situations:
learning-in-cars, etc.

Accuracy )

(essential that final Deep-NN
performance be indistinguishable from
GPUs —hardest technical challenge)

Of zero interest

I

Sweet spot: rather than

~N

Still of interest for some

Of zero buy GPUs, people buy L o
ntarast his chio i qf situations: learning-in-
this c |pf|nstea or server-room
training of Deep-NN’s
e Y
Of zero Of zero (circuitry must be
interest interest massively parallel)
\_ . ) Faster/
“Out of plane” axis - wide applicability
(networks of varying shape with varying types of layers)
ploComp 00 - 30 0
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Deep-ML performance with existing NVM devices
Where we were in June 2014 Where we are in January 2017

« 82% accuracy w/ 5000 examples « SAME wafer of PCM devices

* Too slow to try all 60,000 examples

* 96-97% TEST accuracy w/ 60,000 examples

in the “MNIST” dataset “What a GPU18/6)uId get” with this network...

—
A NN 0 v O
o O o o o

Experimental accuracy [%]
Ul
=]

| 1 1
500 x 661 PCM = (2 PCM/synapse * 164,885 synapses) + 730 unused PCM «— 97_9%06 TE—?&RICISI?Ir\IaC V\g 68|,’0a_oco examples
™~ 94% 3’ ST accuracy w/ 900% exanY ples
\

Experiment

100
90
80
70
60
50
40

Map of%g

Matched simulation]

5000 exanpred accuracy

Accuracy [°/§
>

2 final 10 -
1 PCM g 5 . 10 15 20 91 -
conductances  Training epoch 90 I 1 |
°0 1 2 0 5 10 15
[1] G. W. Burr, R. M. Shelby, et al., IEDM Technical Digest, 29.5, (2014). Epoch

What changed? - Multiple inventions, including
a new unit-cell concept (PCM*™)
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March 2017 tapeout: 2 ADMs and 8 macros

What we estimated in June 2015 Where we are in January 2017
Estimated a ... Estimating a ...
» 25X speedup over GPU » 500x speedup over GPU

» 100-3000x power advantage « power analysis in progress...

ANAlOg re e heuromorp araware > cl d(c




NVM-for-Machine Learning: Recent/upcoming papers

1. S. Sidler, I. Boybat, et al., “Large-scale neural networks implemented with non-volatile memory as the synaptic weight element: impact of
conductance response," ESSDERC 2016, Sept. 2016.

» Impact of idealized jump-tables —
e.g., "‘how much of the conductance response must be linear?”

2. A. Fumarola, P. Narayanan, et al., “Accelerating Machine Learning with Non-Volatile Memory: exploring device and circuit tradeoffs,"
2016 Internat. Conf. on Rebooting Computing, Oct. 2016.

» Impact of real PCMO jump-tables, time-dependent conductances, some circuit choices

3. G.W.Burr, R. M. Shelby et al., “Neuromorphic computing using non-volatile memory," Advances in Physics X, 2(1), 89-124 (2017).
* Review of the NVM-for-neuromorphic field as a whole...

4. P.Narayanan, L. Sanches, et al., “Reducing Circuit Design Complexity for Neuromorphic Machine Learning Systems Based on Non-Volatile
Memory Arrays,” ISCAS 2017.

 Impact of circuit choices (nonlinearity, derivative, implementation of “Occasional RESET”)

5. P. Narayanan, A. Fumarola, et al., “Towards on-chip acceleration of the backpropagation algorithm using non-volatile memory,” IBM
Journal of Research and Development, to appear (2017)

« Summarizes the circuit design challenges

6. |. Boybat, C. di Nolfo, et al., “Improved Deep Neural Network hardware-accelerators based on Non-Volatile-Memory: the Local Gains
technique,” submitted to Intl. Conf. Rebooting Computing (2017)

» Explains our local-gains algorithm




Summary: on-chip learning with non-volatile memory

» NVM-based crossbar arrays CAN accelerate
training of Deep Machine Learning compared to GPU-based training
- Multiply-accumulate performed AT the data

-> We see possibilities for 500x speedup & orders-of-magnitude lower power

» Need: competitive ML accuracy

v experimental results: 96-97% on “minor-league” MNIST using PCM
v Nearly ready to move from “minor-league” to “major-league” DNN problems

v’ “ideal” NVM w/ linear G-response of high dynamic range - sufficient!
- ARC (RFI): use existing NVM (PCM, etc.); invent device/circuit/network techniques

> YKT: Cognitive Materials/RPU project: develop new forms of NVM

» Need: area-efficient peripheral circuitry

v power benefits are quite significant

v but design must preserve speedup benefits

> Aggressive timing & minimal circuit sharing (low C,)

».
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IBM Research — multiple paths to faster ML training

Accelerate backpropagation training ..by performing multiply-accumulates on-chip

(e.g., Deep-NN, Conv-NN, and LSTM)...

gessesvss

7~

Unit
cell

= Existing NVM

(e.g., PCM, “PCMO")

* Available now

* Truly non-volatile

« Compact cell

* Nonlinear + asymmetric

ANAlog re e heuromorp araware

using analog resistive memory elements.

Penp Unlt Unlt Unlt
Circuits cell cell ceII
Perip. Unit Unit Unlt
Circuits cell cell —  cell
Unit Unit Unit
cell C cell == ceII

Perip.
Circuits

Perip.
Circuits

Improved NVM

(Device-RPU)

Capacitors
(CMOS-RPU)

* Yet to be developed
« Non-volatile
« Compact cell
* Linearity is key
(asymmetry can be dealt with)

« Available now

 Leaky = need refresh?
« Larger cell

* Suitably linear

Tayfun Gokmen (IBM Yorktown) p=
Seyoung Kim (IBM Yorktown) Almade e 30




How memory device requirements vary between applications

for for
Storage Class Memory | Neuromorphic

Resistance states: Need 2-8 distinct states need continuous range
of resistance states

“device history” a distraction. absolutely essential.
iS...
LRS cannot be ... too high too low
- need fast read —> read aggregates 100’s of devices
Failing-as-SHORT s just as bad much worse
as Failing-as-OPEN than Failing-as-OPEN
Any 2-terminal nearly perfect nearly perfect
access device had + cannot fail as + cannot fail as

better be... a SHORT a SHORT

o BloComp S olo
. A -
Analog re e heuromorp ardware - c dC




What are the CS folks doing/ignoring?

- What are the computer scientists up to?
* Design-based Big Data Analytics — not “neural”
* Machine Learning
* Deep Neural Networks

* cross-entropy loss
(= “permission” to ignore f’ in the output layer)
* dropout
(better regularization = better generalization)
« ADAGRAD
(adaptively decrease learning rate = less hyperparameter tuning)
* ReLU, batch normalization
(suppress “internal covariant shift” during learning)
* convNets with NO fully-connected layers
(response to limited GPU memory & memory-bandwidth)

* Transcending DNN — LSTM, Recurrent NN, Reinforcement Learning

BloComp e 00
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For CS researchers, what is next?

Image-to-Text:
Caption Generation with Attention

f=(a men, is, jumping, into, a, lake, .)

vvord
Ssample

Recurrent

Sade

Attention
Mechani sm

- -
-----
S

Vedtors

h,

Corvolutionad Neurd Network

{Xu et al., 2015), (Yao et al., 2015)

Slides from Y. Bengio, NIPS 2015 talk.

D e 00
ANalog re e heuromorp araware

Anrdtation

Attention on “Memory Elements”

#Recurrentnetworks cannot remember things for very long
»The cortex only remember things for 20 seconds
#We need a “hippocampus” (a separate memory module)
»LSTM [Hochreiter 1997], registers
»Memory networks [Weston et 2014] (FAIR), associative memory
»NTM [Graves et al. 2014], “tape”.

Attention
mechanism

memory ‘

Gated Recurrent Units &
Long Short-Term Memory

output

* Create a path where
gradients can flow for
longer with self-loop

+ Correspondsto an
eigenvalue of Jacobian
slightly less than 1

* LSTMis heavily used
(Hochreiter & Schmidhuber
1997)

* GRU light-weight version
(Choet al 2014)




For CS researchers, what is next?
Deep Neural Networks + Reinforcement Learning

Convolution Convolution Fully connected Fully connected
A A4 A v

o-

ArR]ejed ju]>
+1+1+1+0+=0+0+1+
[#] (@] [®] (2] (@] (@] (&) (o]

V. Mnih et al., Nature 518, 529 (2015).

Rollout policy SL policy network RL policy network Value network Policy network Value network

T 111
T I
p,, @ls) v, () ~713t~ L fﬁf}w—%@a
23—
; 25—
|
!
1

)I0MIBU [BINBN
|
|

Human expert positions Self-play positions

D. Silver et al., Nature 529, 484 (2016).
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Too much art, not enough science?
% | T i

m) 1971

, g ...yet we can

) (inefficiently)

4 » engineer for
“Rhine River Crossing” g::;ﬁ;? Va\llg (;eet a

By William Vandivert quantitative

Deep-NN might :
1945-04 be a “black box".. ?Oen:r;;]:e(a‘a‘gclgcrzicgc))x "

Prediction: 1945

from “Deep learning, big data, and personal devices,”
Blaise Aglera y Arcas, Google, May 2016
@ SRC/NSF workshop on Intelligent Cognitive Assistants A4S




What are the CS folks doing/ignoring?

- What are the computer scientists up to?
* Design-based Big Data Analytics — not “neural”
* Machine Learning
* Deep Neural Networks
* pros & cons here
* Transcending DNN — LSTM, Recurrent NN, Reinforcement Learning
* Machine Intelligence

- What are the computer scientists missing out on?
* Too addicted to backpropagation & classification = “gravity well”
* Robustness in the presence of imperfections/noise
* Energy efficiency (“Is 0.5% higher accuracy really worth 30x more time & energy?”)
* Spike-based learning techniques
* STDP
* How to implement “strong” Al = “machine intelligence”??

BloComp e 00
ANAlog re e heuromorp araware




How to get to brain-like energy efficiency?

computation
“brain-like” %

N

“ends” of

NON Von Neumann
computation

Von Neumann

Artificial
on GPUs eural
T Networks Towards

omputation
“Wh t"
Cwhatll orainke”
2 é;iél AESON energy
Statistical ©°" CPUs efficiency?

Machihe

Learnin

conventional
computers

))I»

»
BloComp
ANAlog re

“means” of computation (“how")

\\ (( - I - 144
brain-like




Spike-Timing-Dependent Plasticity

Input
spike
Spike timing dependent plasticity VESICLES
(Bi and Poo) \
AXON
Change in o P g B B
Synaptic 80. ' S g
Conductance e T
: & @ o DENDRITE
AG 3 ; NEUROTRANSMITTER.;'/.-'.ARECEPTORS $
g Svnhnapse Output
2 a ynap spike

| A A
Time between presynaptic and postsynaptic spikes Pre THEN Post = STRENGTHEN synapse, GT
G. Bi and M. Poo, J. Neuroscience, A A

18(24), 10464 (1998)

Pre AFTER Post > WEAKEN synapse, G|

:
U4 "M Rece A o e 50, 20



STDP in NVM devices
Nanoscale Memory Can Emulate

Biological Synaptic Behavior

STDP (spike-timing-dependent plasticity)

100t * 100l

—
]
=

|~ 10ms . 25 ms

15ms  3I5ms
120}
20ms 45ms

3

L 3
Z0 i

(=]
=
L ]

-
-
o
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]
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8
, Aw (%)
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8 o ¢

100}

s
-
-
o
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]
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N - 0
At (ms) At (ms)
100}

=
=

=
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S

n

2

50l

"0 20 40 60 80 100
Mumber of pre/post spike pairs

B0 40 20 0 20 40 60
-0 At ?msj 30 -0 At Pms]. =0 Spike timing at (ms)

Synaptic weight change Aw (%
=
L]
1]
o
-
-
o
&
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| ]
Synaptic Weight Change Aw (%)
o
=

Various STDP kernels | | Various time constants | | Weight update saturation

Slide from: S. B. Eryilmaz et al., IEDM 2015, T4.1 (2015).
showing work from: D. Kuzum et al., Nano Lett., p. 2179 (2012)
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2T1R PCM design for Spike-Timing-Dependent-Plasticity

Input Spike-Timing-Dependent-Plasticity (STDP)
— using Phase Change Memory

spikes ¢

_ Pre-synaptic
m  Axon Spike

__,.4;@

WLread | Output
Pre- synaptlc Post-synaptic Dendrite Splkes
. AxonSTDP Gate Membrane Potential
WLlLwrite BLread

I Post-synaptic
| STDP Feed

" Rlwrwvita IEDM2015
NVM Neummorphlc Core with 64Kk-cell (256-by-256) Phase Change Memory Synaptic Array with

On-Chip Neuron Circuits for Continuous In-Situ Learning
S. Kim, M. Ishii, S. Lewis. T. Perri, M. BrightSky, W. Kim. R. Jordan, G. W. Burr”. N. Sosa. A. Ray. J.-P. Han, C. Miller, K. Hosokawa'. and C. Lam
IBM T. J. Watson Research Center. 1101 Kitchawan Rd., Yorktown Heights, NY, 10598, USA

"IBM Tokyo Research Lab. Tokyo. Japan, “IBM Research-Almaden, San Jose, CA. USA.
Tel: +1(914)945-2530, Fax: +1(914)945-4256. email: SangBum. Kim@us.ibm.com

NG . I I / Sangbum Kim (sangbum.kim@us.ibm. com) = 30 20
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nature 1 ART|C|_ES 09
nanOteC 0 Ogy PUBLISHED ONLINE: 16 MAY 2016 | DOI: 10.1038/NNANO.2016.70 08 -
Stochastic phase-change neurons
p g
Tomas Tuma™, Angeliki Pantazi', Manuel Le Gallo'?, Abu Sebastian’ and Evangelos Eleftheriou™ % 05
g o
& 04
Spike event backpropagation
0.3 1
:. ?? :. T ? ’,T ® Dendrites Neuron soma Axon 024
g -
P eoe 9 0% o 01+
_E #_}Eﬁ}_ C Neuronal =
= Neuronal membrane ® 90 @ )
- P ee e r input Spi R 0 200 400 600 800 1,000
= 0 o0 E pike event [ N
E Postsynaptic generation . = Time (ms)
2 botentia Output spike At the steady state, the synapses
(PSP) corresponding to the correlated input
T S | 77 A streams are potentiated, whereas the
e " synapses corresponding to the uncorrelated
Plastic input streams are depressed.
synapses
Biology # Technology
i | 1075 5 Firing threshold
| : 3
000000000 | l
FEEpr i IITATEEE oy R e | |
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Spike- T|m|ng Dependent Plasticity

Uses PART of what the brain exhibits ..

o emmicaksicnd -

Hierarchy?? (multiple layers)

Local inhibition

Steetrasticretravior
Lots of neurons Recurrent connectivity??
AddB-renrote ivi
Lots of synapses PER neuron Local connectivity
S TR | :

Hebbian synaptic plasticity (cells that fire together, wire togeth e pjesmmmm—
Integrate-and-fire in space (many spikes arriving in a vicinity)

Integrate-and-fire in time (many spikes over time)
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Backprop vs. Spike-Timing Dependent Plasticity
X

simulati
=
()
(=] o

[=]

Synapse modification

10

v
fa

uoTloaong p%leﬁedmd-xaeg

Time between presynaptic and postsynaptic spikes
For BOTH: Instantaneous weight update of each synapse
depends only on information available to
TWO local neurons: immediate upstream & downstream neurons

But only for backprop are all those weight updates working together coherently
across the entire network towards a common goal
- lower error on the data-examples in question
Backprop is scalable: it's easy to make network bigger & it tends to get better...

Need to find an architecture/global-algorithm that can harness
an STDP-like local learning rule for robust & scalable learning

»
NG BloComp s 00
» daco A
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Brain-machine interfaces

Brain-machine interfaces & circuits @ biological time-scales (G. Indiveri, E. Chicca, etc.)

Electrical Stimulation patterns

L

+ Sensory Interface

E
[ B\ from 2D position
to electrical stimulation patterns

s

CECERTTT

~ > )
5
£
. 7
~ . c
from neural population ] >
activity to 2D forces :
L. L Dynamical Systemj
Motor Interface
From Vato et al. PLoS Computational Biology, 2012
http://www.ini.uzh.ch/research/36620
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"Deep Machine Learning” vs. "Machine Intelligence”

. « 8 - I ]

“Machine Intelligence”

flexible systems that continuously learn from

unlabeled data, and that perform (motor)
actions, predict consequences of those

actions, and then plan ahead to reach goals

PRO:

« we're sure this is what the brain does

« MI should be able to handle
unlabelled & temporal data

“Brain-inspired” computing
(modern understanding of the brain)

« MI should enable continuous learning

CON:

« we don't know (yet) how the brain guarantees
robust, stable convergence in learning

» we have to figure out how to appropriately
quantify “performance”




Easy Queshon What IS thls man Carrymg’?
Harder Question: What makes this scene unusual?

Gary Marcus, NYU (May2016 Workshop on Intelligent Cognitive Assistants)
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Kids vs dominant Al paradigm

HOW OFTEN A CERTAIN
THING HAPPENS

HOW OFTEN SOME
OTHER THING HAPPENS

In deep learning, it's all correlation, and no causation

Gary Marcus, NYU (May2016 Workshop on Intelligent Cognitive Assistants)
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Children don't just care about correlations

eThey want to know WHY

« Why is the sky blue?
« How do birds fly?
 Where do babies come from?

Gary Marcus, NYU (May2016 Workshop on Intelligent Cognitive Assistants)




this quickly leads them to a rich
‘common-sense understanding of the world

Sensing
Emotions

Trustworthy
3 Hardware
Y= from Untrusted
Components

Q&A with
Dan Boneh
78 Should Conferences
AL Meet Journals and Where?

A Proposal for 'PACM'

¥
BioComp Summer School: Gary Marcus, NYU (May2016 Workshop on Intelligent Cognitive Assistants) )
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Machine Intelligence based on sequences of
Sparse Distributed Representations

OUTPUTS:

Predictions

Context

Stable Concepts (SDR)
Motor commands

: ‘x e o A potential path to handling
: M INPUT: ST temporal, unlabelled data
MO Spatial-temporal data &°" - Maybe a path

— 4 ewt - streams of any kind to machine intelligence?

W .y Requires HUGE fanout:
Context-Aware Learning many POTENTIAL synapses

winfriedwilcke@us.ibm.com (internally analog, externally binary)
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Hierarchical Temporal MemorM

ap temporal data into sequences

4) Temporal Pooler of Sparse Distributed Representations
* invariant representation _ — =
(SDR) of each “recognized” ——
sequence ¢
S T = “Column”
* predict the -
“next” SDR ™ == =
i nex F A .
in the sequence 4 L ¥
given “this” SDR = . o
= — .
~ ’,.‘:
Each cell can be predicted by AN .- v ////// \\\\\
2) Spatial Pooler lateral synaptic excitation from .. Z N
. other cells, aggregated through = \\\\
* map each input dietal >

excitation to an

appropriate SDR of |\

constant sparsity A

,,2 76,, J. Hawkins, S. Blakeslee. On
1) Input Data . intelligence. Macmillan, 2007.
* encode input data into input neurons
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Hierarchical Temporal Memory

Uses PART of what the brain exhibits ...

" ammicasicmed -

Hierarchy (multiple layers)

Local inhibition

SherehastietetrETior
Lots of neurons Recurrent connectivity
Lots of synapses PER neuron Local AND remote connectivity

Sparse-distributed representations
Llebbian synaptic plasticity £{sells-that-fire-togetherwirctogetinr)
Integrate-and-fire in space (many spikes arriving in a vicinity)

| | ficointi , )
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ESCAPE: Accelerator for Machine Intelligence

1000 node parallel system
Xilinx Zyng dual A9 core + FPGA,
1 GB RAM,
6x2 bi-di high-speed links
system topology: 3D mesh
very high bandwidth
Dual purpose
scale up HTM simulations
to > 108 realistic neurons
platform for design
of waferscale system

Winfried Wilcke,
IBM Almaden

ESCAPE will consist of 37 of these cards winfriedwilcke@us.ibm.com
27 FPGA/ARM nodes/card

Very large & complex card, 55 cm x 46 cm, 46 layers (!)
Very fast network (hundreds of GB/sec)
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m Common
L. ScHoor, | Sense
&\smum “Wacky Wednesdayu

Children’s book by
Dr. Seuss

Random House
Publishing, 1974

I went out
the school door. ‘>':

Things were worse than before.

I couldn’t believe it.

Ten wacky things more!

Need a robust analog metric to quantize performance
on such tasks — “we’ll know it when we see it” will not suffice

Without such a metric, it will be difficult to combine the efforts of many researchers
& perfect these systems through many tiny incremental improvements...

. .
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IBM Research Frontiers Institute

THEME 3

The Invisible
Made Visible

Galileo looked through
his telescope and saw
our cosmos in an entirely
new way. We continue
this tradition with a new
generation of scientific
instruments designed

to make our invisible
world visible.

PROJECTS

Macroscopes

‘What decisions would you make wil
the hidden behind

Bioscopes
Microfkiidic tachnologios ara enabling ultra-affordabls, on- qumdag.ma

How will this i ge the way you manage your health

Nanoscopes
rooted in
pt-nunm at the nanoscale impact your business?

Hyperimager

What if you coul beyond

THEME 2 PROJECTS PROGRAM

Data e , Quantum
Experienced oo e Leaps

Data is becoming Dataspaces 7 A special, early-access

a pervasive, almost : : ’ mica o wty program making computing
physical phenomenon. they i breakthroughs from IBM
New technologies Research available to full
are extending human F { ateri: i \ Institute members.
transforming these
data worlds into
sensory experiences.
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MISSIONS

The World’s Most Advanced
Multi-Qubit Quantum Computer

This system employs world-leading multi-qubit architectures with error correction capabil
1o explore ging industrial of quantum g

The World’s Smallest and
Most Affordable Computer

2 i m tion, and power all within the thickness of a few strands
of human hair: lm c:ﬂomlmake ubnquu us computing available at a few cents per unit.

The World’s Highest Bandwidth,
Lowest La’(ency Computer

ine: p rfor Kppu’u atoly 1% of the computing perfon o tha Iule
i mplications for homomor pl queries with i p et nmerce,
Iwa mmm finance, and bnyond

For more information: Sudhir Gowda,

Associate Director, IBM Research Frontiers Institute

gowda@us.ibm.com

www.research.ibm.com/frontiers
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How can hardware play a role?

 Where can hardware (devices, circuits, systems) play a role,
and what’s been done so far?
* Approximate computing
* Stochastic computing
* Hardware for communicating between VN/Non-VN cores
* Address Event Representation
* TrueNorth, SpiNNaker, etc.
* Crossbar Memory for
* accelerating backpropagation
e implementing STDP
* role for stochasticity
* Hardware for large-scale realistic brain simulations
* help understand epilepsy, Parkinson’s , Alzheimer’s
* Brain-machine interfaces
* Machine Intelligence
* ESCAPE system for Machine Intelligence

BloComp e 00
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About the brain

- What DON’T we like about how the brain does computing?
- Not good at providing exact/precise answers
 always a non-zero chance of being “wrong”
» Cognitive biases due to numerous “shortcuts”
2>
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Cognitive biases

* Ambiguity effect — talking without knowing (exactly) what you're talking about

» Focalism (Availability heuristic) — weighing the first piece of incoming (recalled) information too much
* lllusory truth-effect — repeating something doesn’t make it true

» Myside bias — interpreting info in a way which confirms our existing beliefs

» Selective perception — ignoring info that contradicts our existing beliefs

» Base rate fallacy — brain ignores general information, focuses a specific example

* Belief bias — we connect conclusions to premises based on their credibility,
even if that conclusion is not validly supported by those premises.

» Choice-supportive bias — psychological validation of our previous decisions
» The familiarity principle — we like the things we have been repeatedly exposed to
» Social desirability bias — we calibrate response to receive a positive evaluation

Social biases:

» Actor-observer asymmetry — our negative behavior - reflects unigue situation;
others’ negative behavior - general characteristic of their personality.

* Dunning-Kruger effect — less competence - more confidence; minimum confidence occurs
at medium competence — you finally know enough to know you don’t know everything

» False consensus effect — individuals consider themselves “normal,” thus assume others must think like they do

* The illusion of asymmetric insight —people tend to believe that their knowledge of others is
many times more meaningful and broad than other people’s knowledge of them

www.zmescience.com/science/cognitive-biases-list/
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About the brain

- What DON’T we like about how the brain does computing?
- Not good at providing exact/precise answers
 always a non-zero chance of being “wrong”

» Cognitive biases due to numerous “shortcuts”
 Learning procedure is inefficient (can’t transfer learned weights)
» System is too holistic, so “debugging” is a nightmare

« we're forced to understand the WHOLE system,

because the system is not sufficiently modular

- What are we going to miss about the Von-Neumann architecture?
- General purpose - one piece of hardware, many customers/users
* Programmable — often can address problems not considered by designers

* Provides precise, reliable, repeatable answers

* Design is inherently modular
* It's OK to have many domain experts who don’t/can’t comprehend whole system
* Input/output/requirements of each module can be specified readily

».
BioComp s 00
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“Some” imperfections are OK — great!

But basic engineering — like identifying how many would be
“too many” imperfections — will not be easy.

Deep Convolutional Network (DCN)

Big data
sets -

www.datasciencecentral.com/profiles/blogs/concise-visual-summary-of-deep-learning-architectures

Specifications Specifications
D D
Requirements Requirements
- ploComp e 00 0

n A
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A roadmap of brain-inspired computing

Von Neumann NON Von Neumann
computation computation
“brain-like”
I Brain simulation
(on supercomputer) .
Future chips
17 " AU with NVM?
ends” of Artificial r\
R - onGPUs Neural
(“what”) T (TrueNorth) " Brain-
gy Machine
WATSON Interfaces
Neuro-
Statistigal ©°"CPUs morphic  Dynamic

chions Vision
P Sensors

33=>

. «
“means” of computation (“how”) “brain-like”

A
= 0, 20
ANAlog re e heuromorp araware d(




Applications

Anything that requires
« Comprehension: natural language, vision of complex scenes
 understanding of context
 prediction/consequences of actions

« “Big Data” analytics

» multi-modal sensors (“electronic nose”)

« early-alert sensor networks (health-care, policing, tsunamis, etc.)
* personal assistants (Siri, but predictive/proactive)

* “guide glasses” for the blind

» self-driving cars

* autonomous robots

* emergency
*search & rescue
* exploration

» military

BloComp e 00
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Challenges

* nature used evolution — we use engineering & design
*need “transparent” programming model
* how can we “modularize” design, enabling highly complex systems?

* ethical issues
*“network effect”. systems built with lots of data will perform better
- a few large companies could dominate
* how to maintain trust between consumers & suppliers of cognitive computing?

* a large number of jobs (47% [1]) could be affected by “computerisation”
» what will be the consequences of this shift?
In politics, economics, sociology

« “super-intelligence”: Atrtificial Intelligence systems that are “smarter” than we are
« until we really understand consciousness,
can we be sure it’s not just a function of network size?
«if we use the today’s Al to design tomorrow’s, what prevents “runaway” Al?

[1] C. B. Frey and M. A. Osborne, “The Future of Employment: How susceptible are
jobs to computerisation?” Sept. 2013
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Non-Von Neumann opportunities

- Forward inference engines - potentially huge volumes
* On smartphones (TrueNorth > NorthPole)
« Digital first = later analog opportunity too or no...?

« On-chip learning - lower volumes but potentially an essential enabling technology
- Digital w/ reduced precision

» Analog IF..
1. ... peripheral circuitry supports massive parallelism - speed-up over GPU
2. ... NVM devices support linear conductance change > same accuracy as GPU

- STDP-based NN: (e.g., spikes for learning not just communication)
« Killer app that requires learning-from-timing

« Architecture/global-algorithm that harnesses STDP-like local learning rule
for robust learning to support/enable above killer-app

- Machine Intelligence:
» Significant algorithm development needed > too early for crossbar device arrays!

Device researchers who want to have an impact will likely also need to
learn/know/advance the circuits/systems/algorithms module(s)

"ooo s 00 : .
=
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Conclusions

* Brain-inspired computing ...
*is already here — “brain-like” computation on conventional computers

 will attain better energy-efficiency through more “brain-like” neuromorphic chips

*is unlikely to reach the full energy efficiency of the human brain anytime soon
- any Al with complexity similar to the human-brain would not be portable

* Moore’s law will end soon - future improvements in computers will come
MOSTLY from improvements in architecture,
NOT from better, or from more densely-packed, devices

* Opportunities from...

* neuromorphic circuitry to ...
» ... understand network dynamics
« ... interface with the brain (prosthetics, etc.)

caccelerating Deep Learning...
«transcending Deep Learning...
| Thank you for your attention!
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scaling and high-speed operation of fully-confined Access-Devices for 3-D crosspoint memory based on Mixed-Ionic-Electronic-Conduction
(MIEC) Materials,” IEDM Technical Digest 2.7, (2012).
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Electronic-Conduction (MIEC) at 100% yield,” Symposium on VLSI Technology, 75.4, (2012).
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Electronic Conduction (MIEC) Materials,” Symposium on VLSI Technology, T5B-1, (2011).
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A. Lastras, A. Padilla, Bipin Rajendran, S. Raoux, and R. Shenoy, "Phase change memory technology," Journal of Vacuum
Science & Technology B, 28(2), 223-262, (2010).
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Storage-Class Memory," IBM Journal of Research and Development, 52(4/5), 449 (2008).

¢ S. Raoux, G. W. Burr, M. J. Breitwisch, C. T. Rettner, Y. Chen, R. M. Shelby, M. Salinga, D. Krebs, S. Chen, H. L. Lung, and C. H.

Lam, "Phase-change random access memory — a scalable technology," IBM Journal of Research and Development, 52(4/5), 465,,
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* Rich Freitas and Winfried Wilcke, “Storage Class Memory, the next storage system technology,” IBM Journal of Research
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Zaidi, B. Yee, H. L. Lung, R. Bergmann, and Chung Lam, "Ultra-Thin Phase-Change Bridge Memory Device Using GeSb," TEDM
Technical Digest, paper S30P3, (2006).
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synaptic weight element: impact of conductance response," ESSDERC 2016, Sept. 2016.

6. A. Fumarola, P. Narayanan, et al., “Accelerating Machine Learning with Non-Volatile Memory: exploring
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