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Braitenberg vehicles
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Sensors

B are characterized by a sensor characteristic=
relationship between the physical quantity (e.g. sound,
luminance, chemical concentration, mechanical
pressure....) and an inner state variable:“activation”
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Effectors

M are defined by a motor characteristic = a functional
relationship between an inner activation state and a

physical effect generated in the world (e.g., turning
rate (rotations per minute rmp), force level, stiffness,

activation

* A movement

activation
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movement




Body

B mechanically links the sensors to effectors

- <— sensor

<— body

= = |<— motor




Nervous system

M links sensors to effectors through the inner
activation state

<— nervous system




Environment

low
Intensity
M is structured at a
relevant scale in terms
of the physical variables
to which organism is
sensitive high

Intensity



Emergent behavior: taxis
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A intensity
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Behavior emerges as
the solution of a
dynamical system

turning rate
of vehicle

-

heading

B feedforward nervous system attractor ™\ direction
B + closed loop through gk
environment 7

B => (behavioral) dynamics



Complex
environment =>
complex dynamics

M bistable dynamics for
bimodal intensity
distribution

B => nonlinear dynamics
makes selection decision
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A intensity

heading
direction

source source
X 2
Aturmng rate
of vehicle
heading
direction

M transition to monostable
for mono-modal
distribution

source ﬁ ﬁ source,
B => instabilities lead to

qualitative change of N
behavior




M transition to monostable
for mono-modal
distribution

M => instabilities lead to
qualitative change of
behavior
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Beyond sensory-motor cognition...

sourceI ﬁ ﬁ source2
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Beyond sensory-motor cognition...
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Beyond sensory-motor cognition...

Mif sensory information
about source not always
available on the sensory

surface " J U/

B => working memory

(2 O
B need “inner state” that is
—

independent of body or

SENSOrS. % %

B => activation
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Neural dynamics



Activation

® activation as a state variable, that
abstracts from biophysical details

B low levels of activation: not transmitted to other
systems (e.g., to motor systems)

M high levels of activation: transmitted to other
systems

M as described by sigmoidal threshold function

B zero activation defined as threshold of that
function




Activation dynamics

® activation varies continuously in time...

H activation variables u(t) as time continuous
functions...

Tu(t) = f(u) + du(t)/c

® what function f?

» u(t)



Activation dynamics

A du/dt

®mstart with f=0 probability distribution
of perturbations
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resting level
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T?l:ft

resting
level




Activation dynamics

M need stabilization A\

TU = —U h €t°

T u

resting level \

resting
level




Neural dynamics 4 du/dt = f(u)

vector-field

— XTI

resting
level

W) _ it = —u®)+ b (h<0)

dt

Mstationary state=fixed point= constant solution

Mstable fixed point: nearby solutions converge to the
fixed point=attractor



Neuronal dynamics

input, s
Tu(t) = —u(t) + h + inputs(t) \
>

1 I u

Hinputs=contributions to the
rate of change

M positive: excitatory

B negative: inhibitory
B => shift the attractor

B => jctivation tracks shift
based on stability

A du/dt

resting h+s
level, h
A input, s
u(t)

/g(u(t»
// time, t

Z resting level, h
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Neuronal dynamics with self-excitation

input p S ¢
self-excitation C QO

output

Tu(t) = —u(t) + h+ S(t) + co(u(t))



Neuronal Tu(t) = —u(t) + h + S(t) + co(u(t))
dynamics } dude
with self-

excitation y
:\//\
level, h

®=> nonlinear dynamics!




Neuronal A du/ds
dynamics A input strength
with self-
excitation

resting
level, h

Tu(t) = —u(t) + h+ S(t) + co(u(t))




Neuronal A du/dt
dynamics

with self-
excitation

Mat intermediate stimulus
strength: bistable

B“on” vs “off”’ state time, €

'/ u(t)<0

Tu(t) = —u(t) + h+ S(t) + co(u(t))



Neuronal
dynamics
with self-
excitation

Mincreasing input strength
=> detection instability

stimulus
strength

resting
level,

h
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Neuronal
dynamics
with self-
excitation

input strength

level, h

M decreasing input strength
=> reverse detection
instability

stimulus
strength

resting

A du/dt

fixed point

stable

stimulus
> strength
unstable




Neuronal o
A

dynamics reverse
. detection . (f—
with self- e
excitation ! 5/‘ et
detection
instability

Mthe detection and the
reverse detection
instability create discrete
events out of input that
changes continuously in
time



Neuronal dynamics with competition

stimulus

output output

Tu1(t) = —ui(t) +h —o(ua(t)) + 51
Tus(t) = —ua(l) +h — o(ui(t)) + 5




Neuronal dynamics with competition

vector-field in the
absence of input
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Neuronal dynamics with competition

interaction) when both

vector-field (without

neurons receive input
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Neuronal dynamics with competition

®vector-field of mutual inhibition: only activated
neurons participate in interaction
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Neuronal dynamics with competition
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Neuronal dynamics with competition

before input is presented after input is presented
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u?

Neuronal dynamics with competition

=>biased competition

stronger input to site |:

attractor with activated u_ | stronger,
attractor with activated u_2 weaker, may become unstable
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OO
S-S5 a)
S-S

s
e . o S g
-
| ZZZ T,
ZZZT

NaNN N LY
NN N NN Y
NS S N N Y

" " ™ %

.

interaction

t ot
bttt
Pttt

t
1

/

o«
o«
V

s

“ L
“ L LS
“ LS

total

t

t

t

L

L

-

— - — =N
—_—— =N
—_—-— N
— — «— ~IN

0

NN

LA N Al

<IN NN
X

R}

~ \Q\\Q
RN

NN NV T
NSNS N N V2
-bﬁs‘.-
L= & » 0t

C///l\\\




Neuronal dynamics with competition

=>biased competition

before input is presented
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Dynamic Field Theory (DFT)



Dynamic Field Theory (DFT)

51 So1  S3
®where do “inputs” come from...? ¢

@ from sensory systems E:i Zj

B from other neurons

M => activation variables gain their meaning from o
the connections from the sensory surfaces or to

the motor surfaces
g(ue)



Dynamic Field Theory (DFT)

Sl¢ 52¢ 53¢
Uy)
®there is no behavioral evidence for discrete
sampling... Us)  (us)
)

B => abstract from discrete sampling... (0g)

g(ug



D FT information, probability, certainty

A x
activation

field

dimension

N

» metric contents

e.g., space, movement

® define activation fields over continuous spaces  Pparameters featre

dimensions, viewing
parameters,
M homologous to sensory surfaces, e.g., visual or auditory space

(retinal, allocentric, ...)

M homologous to motor surfaces, e.g., saccadic end-points or
direction of movement of the end-effector in outer space

M feature spaces, e.g., localized visual orientations, color,
impedance, ...

M abstract spaces, e.g., ordinal space, along which serial order is
represented



Example motion perception: space
of possible percepts

i } activation

motion

‘/ > direction

|

vertical position

horizontal position




Example: movement planning:
space of possible actions

4 activation

movement
amplitude

movement
direction




Activation fields

N specified value
activation

field

dimension

N
7

A i no value specified
activation

field

dimension

N
>




Grounding in neurophysiology

® activation within populations of neurons
provides the best correlate with behavior



Neurophysiological grounding of DFT
example: movement planning
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mtuning of cells in motor and premotor cortex to
direction of end-effector movement path

Complete Information
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Distribution of Population Activation

(DPA)

Distribution of population activation =
2. tuning curve * current firing rate

neurons

activation
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Blook at temporal
evolution of DPA

Bor DPAs in new
conditions, here: DPA
reflects prior
information
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Distributions of Population
Activation are abstract

Bmneurons are not loca

mcortical neurons real
dimensions

B motor: arm configuration,

ized within DPA!

y are sensitive to many

force direction

Myvisual: many feature dimensions such as spatial frequency,

orientation, direction...

m=> DPA is a projection from that high-
dimensional space onto a single dimension
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mathematical formalization

Amari equation
ri(z,t) = —u(z, )+ h+ S(z, t) + / w(z — &)o(u(, 1)) de’

where
e time scale is 7
e resting level is h < 0
e input is S(x,1)

e Interaction kernel is




Relationship to the dynamics of
discrete activation variables

ALII ALI2

mutual

_selt- 7 inhibition | self
excitation excitation




=> simulation

mMatlab code available at

mhttp://www.dynamicfieldtheory.org/cosivina

Bor

mhttps://bitbucket.org/sschneegans/cosivina/


http://www.dynamicfieldtheory.org/cosivina

solutions and instabilities

Hinput driven solution (sub-threshold) vs. self-stabilized
solution (peak, supra-threshold)

mdetection instability
Hreverse detection instability
Mselection

Hselection instability
Ememory instability

mdetection instability from boost



lllustration: DFT on a
Braitenberg-like
vehicle for target
representation

microphories

\

Robot ™ Microphones

[from Bicho, Mallet, Schoner, Int J Rob Res,2000]




sensory surface

® each microphone samples heading direction

4 sensitivity cone of each microphone

heading
direction




and provides input to the field

% activation
field heading
direction

N
>

A .
input from sensory surface

heading
direction

two sound sources



detection instability on a phonotaxis robot
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target selection on phonotaxis vehicle
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robust estimation




tracking




memory & forgetting on phonotaxis vehicle

A h (resting level)
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a robotic demo of all of instabilities




From fields to behavior

® peak specifies value for a
dynamical variable that is
congruent to the field
dimension

A . .
activation

field

specified value

dimension

peak position

>



From fields to behavior

® => treat supra-threshold
activation as a probability
density...

B but: need to normalize

® => problem when there is
no peak: divide by zero!

1 activation

1 activation

specified value

field

dimension

»
L

peak position

no value specified

field

dimension

A

>




® solution: peak sets attractor

M location of attractor: peak location

From fields to behavior

M strength of attractor: summed supra-threshold activation

Lpeak

= X

[dx x o(u(x,t))

[dx o(u(x,t))

/dxa (x,1))

/dxaux,t

(ZE — wpeak)

T + /dx r o(u(x,t))




from DFT to DST

specified value Ao no value specified
activation

field

dimension dimension

» »
1d >

T activation
field

L dx/dt L dx/dt

A 4
A 4




Neuromorphic implementation of
DFT based vehicle

® Work of Yulia Sandamirskaya’s at INI Zurich
® collaborating with Giacomo Indiveri

® Yulia was previously at INI Bochum, where she
worked on sequence generation in DFT =>
second lecture



Neuromorphics

20 ns
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population dynamics VLS| device
J A?(ROLLS, CXQUAD)

L - .




ROLLS: Reconfigurable Online-Leaning System

AER Input
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digital controllers and AER communication



Dynamic Neural Field on
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Neuromorphic architecture
controlling a vehicle

M obstacle avoidance and target acquisition
implemented on a PushBot (] Conradt)

M sensory input from a neuromorphic

camera, DVS

ROLLS device “PushBot” robot
B DFT on Ro”s device on the parallella board :

Milde, Dietmuller, Hermann Blum,
Indiveri, Sandamirskaya ISCAS 2017



Obstacle avoidance

Parallella

speed
spike count

DVS frame
—

drive right
spike count

drive left
spike count

Target acquisition

DVS frame
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DVS frame
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DVS frame
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Conclusion

® behavioral and neural dynamics endow
embodied nervous systems with elementary
forms of sensory-motor cognition



