Cognition in embodied and situated nervous systems. Lecture 1: Foundations

Gregor Schöner
Institute for Neural Computation
Ruhr-Universität Bochum, Germany
gregor.schoener@ini.rub.de

Lecture I Foundations

- Braitenberg vehicles
- neural dynamics
- dynamic field theory (DFT)
- back to Braitenberg

Lecture 2 Toward higher cognition

- embodied cognition
- multi-dimensional fields for association/transformation
- sequences
- architectures
- higher cognition

Braitenberg vehicles

- =embodied nervous systems with:
 - effectors
 - sensors
 - a nervous system
 - a body
- + situated in a structured environment
- = emergent function

Sensors

are characterized by a sensor characteristic= relationship between the physical quantity (e.g. sound, luminance, chemical concentration, mechanical pressure....) and an inner state variable: "activation"

Effectors

are defined by a motor characteristic = a functional relationship between an inner activation state and a physical effect generated in the world (e.g., turning rate (rotations per minute rmp), force level, stiffness, ...)

Body

mechanically links the sensors to effectors

Nervous system

links sensors to effectors through the inner activation state

Environment

low

intensity

is structured at a relevant scale in terms of the physical variables to which organism is sensitive

Emergent behavior: taxis

Behavior emerges as the solution of a dynamical system

- feedforward nervous system
- + closed loop through environment
- => (behavioral) dynamics

Behavior emerges as the solution of a dynamical system

- feedforward nervous system
- + closed loop through environment
- => (behavioral) dynamics

Complex environment => complex dynamics

- bistable dynamics for bimodal intensity distribution
- => nonlinear dynamics makes selection decision

- transition to monostable for mono-modal distribution
- => instabilities lead to qualitative change of behavior

- transition to monostable for mono-modal distribution
- => instabilities lead to qualitative change of behavior

distance between sources

Beyond sensory-motor cognition...

Beyond sensory-motor cognition...

Beyond sensory-motor cognition...

- if sensory information about source not always available on the sensory surface
- => working memory
- need "inner state" that is independent of body or sensors:
- => activation

Advertisement

argument is expanded in: Schöner, G., Spencer, J. and the DFT research group: Dynamic Thinking: A Primer on Dynamic Field Theory. Oxford University Press, 2015

OXFORD SERIES IN DEVELOPMENTAL COGNITIVE NEUROSCIENCE

Dynamic Thinking

A PRIMER ON DYNAMIC FIELD THEORY

Gregor Schöner, John P. Spencer, DFT Research Group

Neural dynamics

Activation

- activation as a state variable, that abstracts from biophysical details
 - low levels of activation: not transmitted to other systems (e.g., to motor systems)
 - high levels of activation: transmitted to other systems
 - as described by sigmoidal threshold function
 - zero activation defined as threshold of that function

Activation dynamics

- activation varies continuously in time...
- activation variables u(t) as time continuous functions...

$$\tau \dot{u}(t) = f(u) \qquad \qquad \uparrow \text{du(t)/dt}$$
 what function f?
$$\qquad \qquad \qquad \qquad \downarrow \text{u(t)}$$

Activation dynamics

■ start with f=0

$$\tau \dot{u} = \xi_t$$

Activation dynamics

need stabilization

$$\tau \dot{u} = -u + h + \xi_t.$$

- stationary state=fixed point= constant solution
- stable fixed point: nearby solutions converge to the fixed point=attractor

Neuronal dynamics

$$\tau \dot{u}(t) = -u(t) + h + inputs(t)$$

- inputs=contributions to the rate of change
 - positive: excitatory
 - negative: inhibitory
- => shift the attractor
- => activation tracks shift based on stability

$$\tau \dot{u}(t) = -u(t) + h + S(t) + c\sigma(u(t))$$

$$\tau \dot{u}(t) = -u(t) + h + S(t) + c\sigma(u(t))$$

=> nonlinear dynamics!

$$\tau \dot{u}(t) = -u(t) + h + S(t) + c\sigma(u(t))$$

- at intermediate stimulus strength: bistable
- "on" vs "off" state

$$\tau \dot{u}(t) = -u(t) + h + S(t) + c\sigma(u(t))$$

increasing input strength

=> detection instability

decreasing input strength

=> reverse detection

instability

the detection and the reverse detection instability create discrete events out of input that changes continuously in time

$$\tau \dot{u}_1(t) = -u_1(t) + h - \sigma(u_2(t)) + S_1$$

$$\tau \dot{u}_2(t) = -u_2(t) + h - \sigma(u_1(t)) + S_2$$

vector-field in the absence of input

vector-field (without interaction) when both neurons receive input

vector-field of mutual inhibition: only activated neurons participate in interaction

site I inhibits site 2

D 0 u

site 2 inhibits site I

interaction combined

Neuronal dynamics with competition

vector-field with strong mutual inhibition: bistable

Neuronal dynamics with competition

before input is presented

after input is presented

Neuronal dynamics with competition =>biased competition

attractor with activated u_l stronger, attractor with activated u 2 weaker, may become unstable

Neuronal dynamics with competition =>biased competition

before input is presented

after input is presented

Dynamic Field Theory (DFT)

Dynamic Field Theory (DFT)

- where do "inputs" come from...?
 - from sensory systems
 - from other neurons
- => activation variables gain their meaning from the connections from the sensory surfaces or to the motor surfaces

Dynamic Field Theory (DFT)

- there is no behavioral evidence for discrete sampling...
- => abstract from discrete sampling...

DFT

information, probability, certainty

define activation fields over continuous spaces

e.g., space, movement parameters, feature dimensions, viewing parameters, ...

- homologous to sensory surfaces, e.g., visual or auditory space (retinal, allocentric, ...)
- homologous to motor surfaces, e.g., saccadic end-points or direction of movement of the end-effector in outer space
- feature spaces, e.g., localized visual orientations, color, impedance, ...
- abstract spaces, e.g., ordinal space, along which serial order is represented

Example motion perception: space of possible percepts

Example: movement planning: space of possible actions

Activation fields

Grounding in neurophysiology

activation within populations of neurons provides the best correlate with behavior

Neurophysiological grounding of DFT example: movement planning

tuning of cells in motor and premotor cortex to direction of end-effector movement path

Distribution of Population Activation (DPA)

Distribution of population activation =

 \sum_{neurons} tuning curve * current firing rate

- look at temporal evolution of DPA
- or DPAs in new conditions, here: DPA reflects prior information

Distributions of Population Activation are abstract

- neurons are not localized within DPA!
- cortical neurons really are sensitive to many dimensions
 - motor: arm configuration, force direction
 - visual: many feature dimensions such as spatial frequency, orientation, direction...
- DPA is a projection from that highdimensional space onto a single dimension

Dynamics of activation fields in which localized peaks are attractors

mathematical formalization

Amari equation

$$\tau \dot{u}(x,t) = -u(x,t) + h + S(x,t) + \int w(x-x')\sigma(u(x',t)) dx'$$

where

- time scale is τ
- resting level is h < 0
- input is S(x,t)
- interaction kernel is

$$w(x - x') = w_i + w_e \exp\left[-\frac{(x - x')^2}{2\sigma_i^2}\right]$$

• sigmoidal nonlinearity is

$$\sigma(u) = \frac{1}{1 + \exp[-\beta(u - u_0)]}$$

Relationship to the dynamics of discrete activation variables

=> simulation

- Matlab code available at
- http://www.dynamicfieldtheory.org/cosivina
- or
- https://bitbucket.org/sschneegans/cosivina/

solutions and instabilities

- input driven solution (sub-threshold) vs. self-stabilized solution (peak, supra-threshold)
- detection instability
- reverse detection instability
- selection
- selection instability
- memory instability
- detection instability from boost

Illustration: DFT on a Braitenberg-like vehicle for target representation

[from Bicho, Mallet, Schöner, Int J Rob Res,2000]

sensory surface

each microphone samples heading direction

and provides input to the field

detection instability on a phonotaxis robot

[from Bicho, Mallet, Schöner: Int. J. Rob. Res., 2000]

target selection on phonotaxis vehicle

robust estimation

300

350

Ψ

200

tracking

memory & forgetting on phonotaxis vehicle

[from Bicho, Mallet, Schöner: Int J Rob Res 19:424(2000)]

a robotic demo of all of instabilities

From fields to behavior

peak specifies value for a dynamical variable that is congruent to the field dimension

From fields to behavior

- => treat supra-threshold activation as a probability density...
- but: need to normalize
- => problem when there is no peak: divide by zero!

From fields to behavior

- solution: peak sets attractor
 - location of attractor: peak location
 - strength of attractor: summed supra-threshold activation

$$x_{\text{peak}} = \frac{\int dx \ x \ \sigma(u(x,t))}{\int dx \ \sigma(u(x,t))}$$

$$\dot{x} = -\left[\int dx \ \sigma(u(x,t))\right] (x - x_{\text{peak}})$$

$$\Rightarrow \dot{x} = -\left[\int dx \ \sigma(u(x,t))\right] \ x + \left[\int dx \ x \ \sigma(u(x,t))\right]$$

from DFT to DST

Neuromorphic implementation of DFT based vehicle

- Work of Yulia Sandamirskaya's at INI Zürich
- collaborating with Giacomo Indiveri
- Yulia was previously at INI Bochum, where she worked on sequence generation in DFT => second lecture

Neuromorphics

circuit of a neuron

population dynamics

ROLLS: Reconfigurable Online-Leaning System

256 AE IF neurons

16K plastic and 16K non-plastic synapsis analogue electronic circuits digital controllers and AER communication

Qiao et al, 2015

Dynamic Neural Field on ROLLS

Indiveri et al, 2009; Chicca et al, 2014

Neuromorphic architecture controlling a vehicle

- obstacle avoidance and target acquisition implemented on a PushBot (J Conradt)
- sensory input from a neuromorphic camera, DVS
- DFT on Rolls device

Milde, Dietmüller, Hermann Blum, Indiveri, Sandamirskaya ISCAS 2017

Obstacle avoidance

Target acquisition

Milde, Dietmüller, Hermann Blum, Indiveri, Sandamirskaya ISCAS 2017

Milde, Dietmüller, Hermann Blum, Indiveri, Sandamirskaya ISCAS 2017

Milde, Dietmüller, Hermann Blum, Indiveri, Sandamirskaya ISCAS 2017

Conclusion

behavioral and neural dynamics endow embodied nervous systems with elementary forms of sensory-motor cognition