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Lecture 1 Foundations

Braitenberg vehicles

neural dynamics

dynamic field theory (DFT)

back to Braitenberg 

Lecture 2 Toward higher cognition

embodied cognition

multi-dimensional fields for association/transformation 

sequences

architectures

higher cognition 



=embodied nervous systems 
with: 

effectors

sensors

a nervous system

a body

+ situated in a structured 
environment

= emergent function

Braitenberg vehicles

source

sensory
system

body

nervous
system

motor
system

structured
environment



are characterized by a sensor characteristic= 
relationship between the physical quantity (e.g. sound,  
luminance, chemical concentration, mechanical 
pressure.... ) and an inner state variable: “activation”

Sensors

intensity

activation

intensity

activation



are defined by a motor characteristic = a functional 
relationship between an inner activation state and a 
physical effect generated in the world (e.g., turning 
rate (rotations per minute rmp), force level, stiffness, 
…)

Effectors

activation

movement

movement

activation



mechanically links the sensors to effectors

Body

intensity

activation

vehicle 2: "taxis" 

sensor

motor

body



links sensors to effectors through the inner 
activation state

Nervous system

intensity

activation

vehicle 2: "taxis" 

nervous system

sensor

motor

body



is structured at a 
relevant scale in terms 
of the physical variables 
to which organism is 
sensitive

Environment

hot area

cold area

high 
intensity

low 
intensity



Emergent behavior: taxis
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Behavior emerges as 
the solution of a 
dynamical system

feedforward nervous system

+ closed loop through 
environment

=> (behavioral) dynamics

heading
direction

heading
direction

differences in 
intensity
left-right

intensity

heading
direction

turning rate
of vehicle

differences in 
intensity
left-right

source

differences in 
turning rate 
left-right wheel



feedforward nervous system

+ closed loop through 
environment

=> (behavioral) dynamics

heading
direction

turning rate
of vehicle

attractor

Behavior emerges as 
the solution of a 
dynamical system



Complex 
environment => 

complex dynamics

bistable dynamics for 
bimodal intensity 
distribution

=> nonlinear dynamics 
makes selection decision

intensity

heading
direction

turning rate
of vehicle

source1 source2

source2source1

heading
direction



transition to monostable 
for mono-modal 
distribution

=> instabilities lead to  
qualitative change of 
behavior

intensity

heading
direction

turning rate
of vehicle
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heading
direction



transition to monostable 
for mono-modal 
distribution

=> instabilities lead to  
qualitative change of 
behavior

heading 
direction, φ

distance between sources

attractor

attractor

attractor repellor



source1 source2

Beyond sensory-motor cognition… 



Beyond sensory-motor cognition… 

source1 source2



Beyond sensory-motor cognition… 

source1 source2
if sensory information 
about source not always 
available on the sensory 
surface 

=> working memory

need “inner state” that  is 
independent of body or 
sensors: 

=> activation



Advertisement

argument is expanded 
in: Schöner, G., Spencer, 
J. and the DFT research 
group: Dynamic 
Thinking: A Primer on 
Dynamic Field Theory. 
Oxford University 
Press, 2015
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Dynamic Thinking

Gregor Schöner, John P. Spencer, DFT Research Group



Neural dynamics



Activation

activation as a state variable, that 
abstracts from biophysical details

low levels of activation: not transmitted to other 
systems (e.g., to motor systems)

high levels of activation: transmitted to other 
systems

as described by sigmoidal threshold function 

zero activation defined as threshold of that 
function 

0.5 

1 

0 

g(u)

u 



Activation dynamics

activation varies continuously in time… 

activation variables u(t) as time continuous 
functions... 

what function f? 

⌧ u̇(t) = f(u) du(t)/dt

u(t)



Activation dynamics

start with f=0

⌧ u̇ = ⇠t

time, t

u(t)

resting
level

du/dt

u
resting level

probability distribution
of perturbations



Activation dynamics

need stabilization

⌧ u̇ = �u+ h+ ⇠t.

time, t

du/dt

u

u(t)

resting level

resting
level



Neural dynamics

stationary state=fixed point= constant solution

stable fixed point: nearby solutions converge to the 
fixed point=attractor

du(t)

dt
= u̇(t) = �u(t) + h (h < 0)

du/dt = f(u)

u

resting
level

vector-field



Neuronal dynamics

inputs=contributions to the 
rate of change

positive: excitatory

negative: inhibitory

=> shift the attractor

=> activation tracks shift 
based on stability

⌧ u̇(t) = �u(t) + h + inputs(t)

u

h+s

input, s

resting
level, h 

du/dt

time, t

u(t)

resting level, h

g(u(t))

input, s



⇥ u̇(t) = �u(t) + h + S(t) + c�(u(t))

Neuronal dynamics with self-excitation

stimulus

input

output

self-excitationu c
s



⇥ u̇(t) = �u(t) + h + S(t) + c�(u(t))Neuronal 
dynamics 
with self-
excitation u 

du/dt 

resting
level, h
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0 

g(u)

u 

=> nonlinear dynamics!



u 

du/dt 

resting
level, h

input strength

⇥ u̇(t) = �u(t) + h + S(t) + c�(u(t))

Neuronal 
dynamics 
with self-
excitation



at intermediate stimulus 
strength: bistable

“on” vs “off” state

u

du/dt

time, t

u(t)<0

u(t)>0

⇥ u̇(t) = �u(t) + h + S(t) + c�(u(t))

Neuronal 
dynamics 
with self-
excitation



increasing input strength 
=> detection instability

u 

du/dt 

resting
level, h

input strengthNeuronal 
dynamics 
with self-
excitation

u 

du/dt fixed point

unstable

stable
stimulus
strength

stimulus
strength



decreasing input strength 
=> reverse detection 
instability

u 

du/dt 

resting
level, h

input strengthNeuronal 
dynamics 
with self-
excitation

u 

du/dt fixed point 

unstable

stable 

stimulus
strength
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strength



the detection and the 
reverse detection 
instability create discrete 
events out of input that 
changes continuously in 
time

time, t

u(t)

detection 
instability

reverse
detection 
instability

Neuronal 
dynamics 
with self-
excitation



Neuronal dynamics with competition

stimulus

input

output

u1
inhibitory coupling

output

u2

⌧ u̇1(t) = �u1(t) + h� �(u2(t)) + S1

⌧ u̇2(t) = �u2(t) + h� �(u1(t)) + S2



vector-field in the 
absence of input
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Neuronal dynamics with competition



vector-field (without 
interaction) when both 
neurons receive input
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0

0

site 1 inhibits site 2

0

0

0

0

interaction combined

u1

site 2 inhibits site 1

u 2u 2

u 2

u1u1

vector-field of mutual inhibition: only activated 
neurons participate in interaction

Neuronal dynamics with competition
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vector-field with strong
mutual inhibition: bistable
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Neuronal dynamics with competition
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=>biased competition
stronger input to site 1: 

attractor with activated u_1 stronger, 
attractor with activated u_2 weaker, may become unstable
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Neuronal dynamics with competition

0

0

u 1

resting state

re
st

in
g 

st
at

e

u 
2

before input is presented after input is presented

=>biased competition



Dynamic Field Theory (DFT)



Dynamic Field Theory (DFT)

where do “inputs” come from…? 

from sensory systems

from other neurons 

=> activation variables gain their meaning from 
the connections from the sensory surfaces or to 
the motor surfaces 

 Neural Dynamics 11

is uniquely represented by a particular rate of neural firing. In general, however, the map is 
invertible, so that a many-to-one mapping may result. This is the case, for instance, when dif-
ferent patterns of input are mapped onto the same “response.” Still, information-theoretical 
terms are sometimes used to characterize such networks by saying that the output neurons 
“encode” particular patterns of input, perhaps with a certain degree of invariance, so that a 
set of changes in the input pattern do not affect the output. A whole field of connectionism or 
neural network theory is devoted to finding ways of how to learn these forward mappings from 
examples. An important part of that theory is the proof that certain classes of learning meth-
ods make such networks universal approximators; that is, they are capable of instantiating any 
reasonably behaved mapping from one space to another (Haykin, 2008). In this characterization 
of a feed-forward neural network, time does not matter. Any time course of the input pattern 
will be reflected in a corresponding time course in the output pattern. The output depends only 
on the current input, not on past inputs or on past levels of the output or the hidden neurons.

A recurrent network such as the one illustrated in Figure 1.3 cannot be characterized by 
such an input–output mapping. In a recurrent network, loops of connectivity can be found so 
that one particular neuron (e.g., u4 in the figure) may provide input to other neurons (e.g., u6), 
but also conversely receive input from those other neurons either directly (u6) or through some 
other intermediate steps (e.g., through u6 and u5 or through the chain from u6 to u5 to u2 to u4).  
The output cannot be computed from the input value because it depends on itself! Recurrence 
of this kind is common in the central nervous system, as shown empirically through methods 
of quantitative neuroanatomy (Braitenberg and Schüz, 1991).

To make sense of recurrent neural networks, the notion of time is needed, at least in some 
rudimentary form. For instance, neural processing in such a network may be thought of as 

s1

u1

s3s2

g(u6)

u2 u3

u4 u5

u6

FIGURE 1.2: In this sketch of a feed-forward neural network, activation variables, u1 to u6 , are symbolized by the 
circles. Inputs from the sensory surface, s1 to s3, are represented by arrows. Arrows also represent connections where 
the output of one activation variable is input to another. Connections are ordered such that there are no closed loops 
in the network.

s1 s3s2

g(u6)

u1 u2 u3

u4 u5

u6

FIGURE 1.3: Same sketch as in Figure 1.2, but now with additional connections that create loops of connectivity, 
making this a recurrent neural network.
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Dynamic Field Theory (DFT)

there is no behavioral evidence for discrete 
sampling…

=> abstract from discrete sampling… 

 Neural Dynamics 11

is uniquely represented by a particular rate of neural firing. In general, however, the map is 
invertible, so that a many-to-one mapping may result. This is the case, for instance, when dif-
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will be reflected in a corresponding time course in the output pattern. The output depends only 
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of this kind is common in the central nervous system, as shown empirically through methods 
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DFT

define activation fields over continuous spaces

homologous to sensory surfaces, e.g., visual or auditory space 
(retinal, allocentric, ...)

homologous to motor surfaces, e.g., saccadic end-points or 
direction of movement of the end-effector in outer space

feature spaces, e.g., localized visual orientations, color, 
impedance, ...

abstract spaces, e.g., ordinal space, along which serial order is 
represented 

e.g., space, movement 
parameters, feature 
dimensions, viewing 

parameters, ...

dimension

activation
field

metric contents

information, probability, certainty



Example motion perception: space 
of possible percepts 

activation

motion directionhorizontalposition
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Example: movement planning: 
space of possible actions

movement
direction

movement
amplitude

activation

movem
ent

direct
ion

movement
amplitude

0



Activation fields

dimension

activation
field

specified value

dimension

activation
field

no value specified



Grounding in neurophysiology

activation within populations of neurons 
provides the best correlate with behavior 



example: movement planning

Bastian, Riehle, Schöner, 2003

movement
direction

Neurophysiological grounding of DFT



tuning of cells in motor and premotor cortex to 
direction of end-effector movement path



Distribution of Population Activation 
(DPA)
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look at temporal 
evolution of DPA

or DPAs in new 
conditions, here: DPA 
reflects prior 
information 
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Distributions of Population 
Activation are abstract

neurons are not localized within DPA! 

cortical neurons really are sensitive to many 
dimensions

motor: arm configuration, force direction

visual: many feature dimensions such as spatial frequency, 
orientation, direction... 

=> DPA is a projection from that high-
dimensional space onto a single dimension



Dynamics of 
activation fields 

in which 
localized peaks 
are attractors

movement 

parameter

time

activation

preshaped
field

specific input
arrives

dimension, x

local excitation: stabilizes
peaks against decay

global inhibition: stabilizes 
peaks against diffusion

input

activation field u(x)

(u)

u



mathematical formalization
Amari equation

⌧ u̇(x, t) = �u(x, t) + h + S(x, t) +

Z
w(x� x

0
)�(u(x

0
, t)) dx

0

where

• time scale is ⌧

• resting level is h < 0

• input is S(x, t)

• interaction kernel is

w(x� x

0
) = wi + we exp

"

�(x� x

0
)

2

2�

2
i

#

• sigmoidal nonlinearity is

�(u) =

1

1 + exp[��(u� u0)]

1



Relationship to the dynamics of 
discrete activation variables

self-
excitation

mutual
inhibition

s(x)
u(x)

u1 u2

x

s1
s2

self-
excitation



=> simulation

Matlab code available at 

http://www.dynamicfieldtheory.org/cosivina

or 

https://bitbucket.org/sschneegans/cosivina/

http://www.dynamicfieldtheory.org/cosivina


solutions and instabilities

input driven solution (sub-threshold) vs. self-stabilized 
solution (peak, supra-threshold)

detection instability

reverse detection instability

selection

selection instability 

memory instability 

detection instability from boost



Illustration: DFT on a 
Braitenberg-like 
vehicle for target 
representation 



each microphone samples heading direction

heading
direction

sensitivity cone of each microphone

sensory surface



and provides input to the field

activation
field

heading
direction

two sound sources

input from sensory surface

heading
direction



detection instability on a phonotaxis robot



target selection on phonotaxis vehicle



robust estimation



tracking



memory & forgetting on phonotaxis vehicle



a robotic demo of all of instabilities



From fields to behavior

peak specifies value for a 
dynamical variable that is 
congruent to the field 
dimension

dimension

activation
field

specified value

peak position



=> treat supra-threshold 
activation as a probability 
density…

but: need to normalize 

=> problem when there is 
no peak: divide by zero! 

dimension

activation
field

specified value

peak position

dimension

activation
field

no value specified

From fields to behavior



solution: peak sets attractor

location of attractor: peak location

strength of attractor: summed supra-threshold activation

xpeak =

⇤
dx x �(u(x, t))

⇤
dx �(u(x, t))

ẋ = �
�⌅

dx �(u(x, t))
⇥
(x � xpeak)

⇥ ẋ = �
�⌅

dx �(u(x, t))
⇥

x +
�⌅

dx x �(u(x, t))
⇥

From fields to behavior



from DFT to DST

dimension

activation
field

specified value

dimension

activation
field

no value specified

x

dx/dt

x

dx/dt



Neuromorphic implementation of 
DFT based vehicle 

Work of Yulia Sandamirskaya’s at INI Zürich

collaborating with Giacomo Indiveri

Yulia was previously at INI Bochum, where she 
worked on sequence generation in DFT => 
second lecture



Neuromorphics

neuron circuit of a neuron

Ning et al. A Learning Neuromorphic Processor
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Figure 3: Silicon neuron schematics. The NMDA block implements a voltage gating mechanism; the
LEAK block models the neuron’s leak conductance; the spike-frequency adaptation block AHP models
the after-hyper-polarizing current effect; the positive-feedback block N+ models the effect of the Sodium
activation and inactivation channels; reset block K+ models the Potassium conductance functionality.

2.2 THE NEUROMORPHIC PROCESSOR BUILDING BLOCKS

Here we present the main building blocks used in the ROLLS neuromorphic processor chip, describing
the circuit schematics and explaining their behavior.

2.2.1 The silicon neuron block The neuron circuit integrated in this chip is derived from the adaptive
exponential I&F circuit proposed in (Indiveri et al., 2011), which can exhibit a wide range of neural
behaviors, such as spike-frequency adaptation properties, refractory period mechanism and adjustable
spiking threshold mechanism. The circuit schematic is shown in Fig. 3. It comprises an NMDA block
(MN1,N2), which implements the NMDA voltage gating function, a LEAK DPI circuit (ML1−L7) which
models the neuron’s leak conductance, an AHP DPI circuit (MA1−A7) in negative feedback mode, which
implements a spike-frequency adaptation behavior, an Na+ positive feedback block (MNa1−Na5) which
models the effect of Sodium activation and inactivation channels for producing the spike, and a K+ block
(MK1−K7) which models the effect of the Potassium conductance, resetting the neuron and implementing
a refractory period mechanism. The negative feedback mechanism of the AHP block, and the tunable reset
potential of the K+ block introduce two extra variables in the dynamic equation of the neuron that can
endow it with a wide variety of dynamical behaviors (Izhikevich, 2003). As the neuron circuit equations
are essentially the same of the adaptive I&F neuron model, we refer to the work of Brette and Gerstner
(2005) for an extensive analysis of the repertoire of behaviors that this neuron model can reproduce, in
comparison to, e.g., the Izhikevich neuron model.

All voltage bias variables in Fig. 3 ending with an exclamation mark represent global tunable parameters
which can be precisely set by the on chip Bias Generator (BG). There are a total of 13 tunable parameters,
which provides the user with high flexibility for configuring all neurons to produce different sets of
behaviors. In addition, by setting the bits of the relative latches in each neuron, it is possible to configure
two different leak time constants ( if tau1! / if tau2!) and refractory period settings ( if rfr1! / if rfr2!) per
neuron. This gives the user the opportunity to model up to four different populations of neurons within
the same chip that have different leak conductances and/or refractory periods.

Frontiers in Neuroscience 7

population dynamics VLSI device 
(ROLLS, CXQUAD)



ROLLS: Reconfigurable Online-Leaning System 
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 256 AE IF neurons
16K plastic and 16K non-plastic synapsis

 analogue electronic circuits
 digital controllers and AER communicationQiao et al, 2015



Dynamic Neural Field on ROLLS

i

i

neuronsnon-plastic synapses

synapse, EXC1

synapse, INH1

synapse, not set

neuron

i
inhibitory neuron

Indiveri et al, 2009; Chicca et al, 2014

Both De Young et al. and Hylander et al. presented very

simple examples of WTA networks, and showed the ability
of their VLSI networks to select one winner, but not to

perform soft WTA computation. Thanks to the progress of

VLSI technology, more recent implementation of spiking
VLSI WTA networks integrate many more neurons on a

single chip, and implement more elaborate soft WTA

models: in 2001, Indiveri et al. [40] presented a spiking
network consisting of 32 excitatory neurons and one global

inhibitory neuron. The authors characterized the behavior
of the network using the mean rate representation and

Poisson distributed input spike trains. They showed the

network could exhibit soft WTA behaviors modulated by
the strength of lateral excitation and investigated the net-

work’s ability to produce correlated firing, combined with

the WTA function. In 2004, several additional VLSI
implementations of WTA networks were presented: Oster

and Liu [51] presented a 64 neurons network that used all-

to-all inhibition to implement a hard WTA behavior;
Abrahamsen et al. [2] presented a time domain WTA

network that used self-resetting I&F neurons to implement

hard WTA behavior, by resetting all neurons in the array
simultaneously, as soon as the winning neuron fired; and

Chicca et al. [15] presented a recurrent network of spiking

neurons, comprising 31 excitatory neurons and 1 global
inhibitory neuron. This network is an evolution of the one

presented in [40] which includes second neighbor excit-

atory connections (in addition to first neighbor excitation),
and can be operated in open-(linear array) or closed-loop

(ring) conditions. Figure 2 shows experimental data mea-

sured from the chip, describing how it is able to perform
nonlinear selection, one of the typical soft WTA network

behaviors (see also Fig. 1). An input stimulus (see Fig. 2a)

consisting of Poisson trains of spikes, with a mean

frequency profile showing two Gaussian-shaped bumps

with different amplitude, is applied to the input synapses of
each neuron in the soft WTA network. The chip output

response is a series of spike trains produced by the 32

silicon neurons (see Fig. 2b). The mean frequencies mea-
sured from each spike raster in Fig. 2b show how the soft

WTA network (blue line) selects and amplifies the

Gaussian bump with higher activity while suppressing the
other one, with respect to the baseline condition (no

recurrent connections, green line).
More recent hardware implementations of the spiking

soft WTA network have been realized by the authors.

These chips comprise both larger numbers of neurons (e.g.,
up to 2048) and spike-based learning capabilities (see

‘‘Spike-Based Learning’’ section).

Spike-Based Learning

An additional feature that is crucial for implementing
cognitive systems with networks of spiking neurons is

spike-based plasticity. Plasticity is one of the key proper-

ties of biological synapses, which provides the brain with
the ability to learn and to form memories. In particular,

long-term plasticity (LTP) is a mechanism which produces

activity-dependent long-term changes in the synaptic
strength of individual synapses, and plays a crucial role in

learning [1]. A popular class of LTP spike-driven learning

mechanisms, that has recently been the subject of wide-
spread interest, is the one based on spike-timing dependent

plasticity (STDP) [1, 46]. In STDP, the relative timing of

pre- and post-synaptic spikes determine how to update the
efficacy of a synapse. In VLSI networks of spiking neu-

rons, STDP-type mechanisms map very effectively onto

silicon. Several examples of STDP learning chips have
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Neuromorphic architecture 
controlling a vehicle

obstacle avoidance and target acquisition 
implemented on a PushBot (J Conradt)

sensory input from a neuromorphic 
camera, DVS

DFT on Rolls device
ROLLS device

on the parallella board
“PushBot” robot
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We chose however to connect the robot over a serial port to the Parallella to make connection
more robust and the small size, weight and power consumption of the Parallella allow it to be
mounted on the robot as well.

The second supported robot is the PushBot, also provided by NST. The PushBot has a similar
interface as the OmniRob and can also be easily accessed with the build-in WiFi module[8] over
a socket application programming interface (API).

Figure 13. The two robotic platforms currently supported by omnibot-lib: on the left the PushBot
and on the right the OmniBot (see also [12, 5]) for more information
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Figure 14. Header files defining the interfaces to the robots and the robot listeners

The Robot was controlled by sending the necessary instructions over the serial connection from
the Parallella. The most important instructions are listed in table 1 on the following page:

Similarly to the DVS camera, di↵erent properties of the OmniBot are monitored asyn-
chronously by the RobotListener object, such as the actual servo states, if and which bumper
has been hit, making use again of the observer pattern as can be seen in figure 15 on page 15.
These states are logged as formatted text or processed immediately, such as the bumper states,
that trigger an emergency stop of the robot until the next drive command is send. At the
moment the Robot is polled in an interval of 1 s, future updates of the OmniBot firmware will
feature a broadcast function. However, logging the robot parameters is currently disabled as it
is favored to directly log the mapped keyboard inputs (see also figure 9 on page 11 for a list of
the mappings) instead of the polled robot parameters, amounting to the same result. Linux has
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Fig. 3: Demonstrating the graded nature of the spatial
representation of obstacles: an object is placed at different
distances from the robot’s initial heading direction. Left:
Overlays of the overhead camera images for three trials. The
red line marks the line of the initial heading direction of the
robot. Right: Activity of the obstacle, drive, and speed neural
populations on the ROLLS.

At the same time, the mismatch may be beneficial in a neuronal
controller, as the variability would allow to escape unstable fix-
points of the dynamics, as well as facilitate exploratory behav-
ior in more complex scenarios. In summary, we showed how
our system can produce meaningful robotic behaviors, despite
the constrains and limitations of the neuromorphic hardware.
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Fig. 2: Avoiding obstacles in a cluttered environment. Top:
overlay of the overhead camera frames. Middle: DVS events
at three points during the experiments (the points are marked
with 1, 2, and 3 in the top pane). Green are “off” and blue
are “on” events. Bottom: Output of the obstacle, turn, and
speed populations of the ROLLS chip.

for synapses from different obstacle neurons to the turn
populations to make the robot turn faster if an obstacle is
in front of the robot and slower if it is on the periphery. To
overcome the limitation of the ROLLS chip in the limited
(four) number of possible weight values, we used multiple
sets of synapses. Thus, neurons representing an obstacle in
the center project to all neurons in the turn population (16 in
total), while neurons representing obstacles on the edge have
only one connection. We use the same idea for the inhibition
of the speed population: the robot slows down more for central
than for peripheral obstacles. For target acquisition, we use an
inverted scheme: neurons representing a target in the center
have less connections since less turning is required. In this
way, convergence on the direction towards the target can be
achieved and the network effectively sets an attractor for the
robot’s heading direction on the direction towards the target.

5) Proprioception: In this work we also used the Inertia
Measurement Unit (IMU) device integrated in the DVS to
model proprioception and saccadic suppression. We read
the measurement for angular velocity along the robots axis,
sampled every 50 ms. This measurement was used to set the
rate of stimulation for a gyro population on the ROLLS chip
(16 neurons). Because of the nature of the DVS output, a
greater number of events is produced while turning. We use the
gyro population to inhibit all populations receiving DVS input
(the obstacle and target input populations) during turning.

III. EXPERIMENTAL RESULTS

Figure 2 demonstrates the obstacle avoidance behavior
of the robot controlled by our neuronal architecture on the
ROLLS chip on one of trials. The robot is put in an arena,
in which a number of obstacles is arbitrarily distributed.
The top part of the figure shows an overlay of camera
frames from an overhead camera that allows to follow the
robot’s trajectory as it navigates in this cluttered environment,
avoiding collisions with objects and walls. The middle part of
the figure shows the output of the DVS at three time points
during this experiment (number 1, 2, and 3 in the top-view
image). The DVS events are sampled for 1500 ms to show
them as one image. The neurons on the ROLLS chip receive
events from DVS pixels asynchronously in real time. Note the
noisy and cluttered character of the output signal. The bottom
plots in the figure show activity of the obstacle, turn, and
speed populations on the ROLLS chip. Note how the speed
population is inhibited when an obstacle is detected, how the
obstacles are represented in a spatially resolved way by the
obstacle left and obstacle right populations, and how the turn
populations are activated to a different degree depending on
the position of the obstacle relative to the midline.

Figure 3 demonstrates how the robot modulates the
amplitude of the obstacle avoidance maneuvre depending on
the distance of the obstacle from the midline of the DVS
frame. Here, the robot moves towards a cup, which is placed
at different distances from the line that would be the robot’s
straight trajectory in the absence of the obstacle. The figure
shows that the obstacle and the turn neuronal populations are
activated stronger and for a longer time for the more central
obstacle, leading to a more pronounced avoidance maneuver.
For a peripheral obstacle, the robot only slightly changes
its trajectory. This behavior emerges from the dynamics and
connectivity of neuronal populations on the ROLLS chip and
is not “programmed” algorithmically.

Figure 4 demonstrates the target acquisition behavior of
the robot. In the presented experiment, the Pushbot equipped
with the ROLLS device approaches a second Pushbot with a
blinking LED. Since the upper part of the DVS FoV is used
for target acquisition, many disturbing events are perceived
by the DVS from the background objects outside the arena.
The target input population filters our much of the noise
events, whereas the connectivity of the target WTA population
creates a stable localised representation of the single most
salient (the LED) object.

IV. DISCUSSION

In this work, we presented a neuromorphic obstacle avoid-
ance and target acquisition architecture, realized using low-
power and low-latency event-based sensing and processing.
This architecture allows to smoothly and reliably avoid obsta-
cles and track the target object. We showed how redundant
synaptic connectivity between populations of neurons can be
used to cope with the low number of available weight values in
the neuromorphic hardware and allowed us to realize complex
graded connectivity patterns with a limited number of weights.
We also demonstrated how we can overcome the effects of
device mismatch of the neuromorphic hardware by redundant
computation using population dynamics and neuronal filtering.
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Conclusion

behavioral and neural dynamics endow 
embodied nervous systems with elementary 
forms of sensory-motor cognition 


