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B embodied cognition

B multi-dimensional fields for operations
M association

B coordinate transforms
B sequential operation
B architectures

B higher cognition



Is soccer a cognitive!?

B see and recognize the ball and the other
players, estimate their velocities (perception,
scene representation)

B select a visual target, track it, controlling
gaze (attention)

B use working memory when players are out
of view to predict where you need to look
to update (working memory)

B plan and control own motion, initiate and
control kick, update movement plans any
time (planning)

B get better at playing (learning)

B know goal of the game/rules, how hard the
ball is, how fast players are (background
knowledge)



Repairing a toaster is cognition
but also still embodied

I explore scene, recognize screws, while keeping
track of spatial arrangement (scene representation,
coordinate transforms)

I plan action, find tools, apply them to remembered
locations, updated by current pose of toaster
(working memory, scene representation)

B manipulating cover, taking it off, recognizing spring,
re-attaching it (goal-directed action plan)

B mounting cover back on, generating the correct
action sequence (sequence generation)

B set better at this (learning)

B know about cover, screws, hard to turn (background
knowledge)
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“embodied cognition”

M active perception for a purpose through which
perceptual objects are grounded: sensory
autonomy

B cognitive processes continuously updated and
continuously linkable to motor processes: stability

B invariance and abstraction must retain this linkage
to the sensory and motor surfaces

B cognition is sensitive to behavioral history,
environmental context: learning, adaptation

B (cognition arises from neural systems)

M build in “back-ground knowledge” (Searle)



The embodiment hypothesis

Bthere is no particular boundary up to which,
cognition is embodied and beyond which
cognition is “truly higher cognition and loses the
properties of embodiment

B => all cognition shares properties of embodied
cognition



Neural dynamics hypothesis

B because embodied cognition unfolds
In time, in interaction among
processes, often including interaction
(loop) between organisms and their
environment

B => embodied cognition requires
dynamics...




The goal of this second lecture is
to show how the neural dynamic
principles of DFT and embodied
cognition may reach to higher
cognition.



Higher dimensional fields
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DPA in higher dimension

mfor example, 2D retinal space

time

30 - 40 ms 40 - 50 ms 50 - 60 ms - 70 ms 70 - 80 ms

[Jancke et al., 1999]



New functions become available
in higher dimensional fields

visual scene

® example: color-space field 360
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[Slides adapted from Sebastian Schneegans,
see Schneegans, Lins, Spencer, Chapter 5 of Dynamic Field Theory-A Primer, OUP 2015]



visual scene
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From 2D to ID: projection

360
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dimension (marginalization)
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from |ID to 2D: ridges

m ridge localized along one dimension, constant along

the other dimension

visual scene
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from |ID to 2D: ridges

visual scene
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[Slides adapted from Sebastian Schneegans,
see Schneegans, Lins, Spencer, Chapter 5 of Dynamic Field Theory-A Primer, OUP 2015]



feature-binding

visual scene
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[Slides adapted from Sebastian Schneegans,
see Schneegans, Lins, Spencer, Chapter 5 of Dynamic Field Theory-A Primer, OUP 2015]



visual search

visual scene
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see Schneegans, Lins, Spencer, Chapter 5 of Dynamic Field Theory-A Primer, OUP 2015]



Example: Color-Space field

visual scene
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Coordinate transformations

= eye movement: visual target from retinal
representation to head-centered representation for
reaching

visual scene visual scene

/
eye with
ocular muscles

visual image visual image

[Slides adapted from Sebastian Schneegans,
see Schneegans, Chapter 7 of Dynamic Field Theory-A Primer, OUP, 2015]



® every gaze shift changes the  visualscene visual scene

spatial reference frame of O O
the visual perception i
= how to memorize locations Q eye with ©
when the reference frame ocular muscles
keeps shifting?
® ®
m => transformation to gaze-
visual image visual image

invariant reference frame

[Slides adapted from Sebastian Schneegans,
see Schneegans, Chapter 7 of Dynamic Field Theory-A Primer, OUP, 2015]



coordinate transformations

® need mapping between different reference frame:
retinocentric (moving with the eye) to body-centered
(gaze-invariant)

= mapping is a variable shift, depends on current gaze
direction

®3as a formula x body = x retinal + x gaze

m but how to implement this in DNFs, using space code
representations?

[Slides adapted from Sebastian Schneegans,
see Schneegans, Chapter 7 of Dynamic Field Theory-A Primer, OUP, 2015]



coordinate transformations

u fixed mapping: neural projection | I\
in a neural network "
® steerable mapping that depends
on gaze/eye position: that’s the 1 t
challenge k& S AN

[Slides adapted from Sebastian Schneegans,
see Schneegans, Chapter 7 of Dynamic Field Theory-A Primer, OUP, 2015]



coordinate transformations

m expand into a 2D field

= free output connectivity to
implement any mapping

[Slides adapted from Sebastian Schneegans,
see Schneegans, Chapter 7 of Dynamic Field Theory-A Primer, OUP, 2015]



coordinate transformations
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coordinate transformations
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coordinate transformations

g R T T T T T
A = retinal field B
O — N\
>
g -10 | | | ) Visual Stimlﬂus
—-60° —40° -20° 0° 20°|| 40°  60°
3
O
=
L i
N
<
on

gaze direction

—20° 30° 10°

- i 407 f’\ /’\ /Fb\
: _600 . .
. . aze stimulus  stimulus
100 -10 retinal position S :
activation direction  (retinal) . élralz;drz;i :

[Slides adapted from Sebastian Schneegans,
see Schneegans, Chapter 7 of Dynamic Field Theory-A Primer, OUP, 2015]



coordinate transformations
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coordinate transformations
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coordinate transformations
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spatial rema
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Coordinate transformations

m predict
retinal
location
following
gaze shift

[Schneegans, Schoner, BC 2012]
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Neural dynamics
of sequence generation

‘ target 2
@

: target |
M Behavior and obstacles

cognition consist of
sequences of
actions or thoughts ‘

‘ target 3

vehicle




®|earn a serially ordered ® perform a serially ordered
sequence from a single sequence with new timing
demonstration

yellow-red-green-blue-red yellow-red-green-blue-red

[Sandamirskaya, Schoner: Neural Networks 23:1163 (2010)]



Neural dynamics
of sequence generation

‘ target 2
@

target |
obstacles

B represent the target
color by a stable peak
that resists attractors

‘ target 3

vehicle




red a distractor red a target

[Sandamirskaya, Schoner: Neural Networks 23:1163 (2010)]



Neural dynamics
of sequence generation

‘ target 2
@

B when the sought color target |

is found, switch to the obstacles
next color by releasing
the previous state from
stability...through an ‘

instability '/
target 3

vehicle




“Condition Of ordinal dynamics
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Camera image
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ordinal stack condition of satisfaction (CoS)

intentional state

2D feature-space field




Neuromorphic implementation

B by Yulia Sandamirskaya’s group at INI Zurich.
M (see also http://sandamirskaya.eu )

B this is unpublished work to date...


http://sandamirskaya.eu
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Architectures



Sequence of shifts of attention
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[Zibner 2015]



Reaching and grasping
with online updating

\
\

Standing Box

Online updating of position and orientation

[Knips et al., ICRA 2014]



Online reorganization of sequence

: ; -

hitting action reinitiat
after ball reflection




object recognition in a scene
representation

o -
4 recognition labels
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foveal image

spatial map selection field e

[Zibner, Faubel, IROS 201 I]



Higher cognition
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Perceptually grounding language

® human language/thought in its
simplest form is about “things” that
are our there in our environment,
perceivable, reachable by action

® perceptually grounding language:

M “this cup is brown”

M “the cup to the right of the book™ (spatial
language)

M “the green ball moves away from the yellow
ball” (verb)



Generating language

® human language/thought in its
simplest form is about “things” that
are our there in our environment,
perceivable, reachable by action

M generating language
M “this cup is brown”

M “the cup to the right of the book™ (spatial
language)

M “the green ball moves away from the yellow
ball” (verb)
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Processing steps entailed in grounding
and generating language

@
®bringing objects into the perceptual;

attentional foreground v ]\

® transforming one object in a o e o .
reference frame centered in the = ¢
other object: coordinate transform
=> Sebastian Schneegans talk

®applying spatial/verb
“operators’=neural coupling

structures that enable detection of
relationship

Reference

[Lipinski et al., JEP:LMC 2012] Object-centered
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autonomous processing

®some processing steps must occur
sequentially in time... e.g. because
they entail testing hypotheses one
after another

® the switch from one to the other
must occur autonomously: as one
process is “satisfied”, it deactivates
and leaves room for the next...

® ... or one processes may be ‘ .
“dissatisfied”, also leading to a ' ’

switch...

[Richter, Lins, Schneegans, Sandamirskaya, Schoner Proc. Cog Sci 2014]



“red to the left of green”
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Conclusion

B ....go a far way from the simple sensory
motor cognition of Braitenberg vehicles

B ... toward higher cognition

® ... all neural dynamics, gathered into
architectures

B ... in which instabilities are key to the
autonomous generation of sequences of
thoughts or actions



