Cognition in embodied and situated nervous systems. Lecture 2: toward higher cognition

Gregor Schöner
Institute for Neural Computation
Ruhr-Universität Bochum, Germany
gregor.schoener@ini.rub.de

- embodied cognition
- multi-dimensional fields for operations
 - association
 - coordinate transforms
- sequential operation
- architectures
- higher cognition

Is soccer a cognitive?

- see and recognize the ball and the other players, estimate their velocities (perception, scene representation)
- select a visual target, track it, controlling gaze (attention)
- use working memory when players are out of view to predict where you need to look to update (working memory)
- plan and control own motion, initiate and control kick, update movement plans any time (planning)
- get better at playing (learning)
- know goal of the game/rules, how hard the ball is, how fast players are (background knowledge)

Repairing a toaster is cognition but also still embodied

- explore scene, recognize screws, while keeping track of spatial arrangement (scene representation, coordinate transforms)
- plan action, find tools, apply them to remembered locations, updated by current pose of toaster (working memory, scene representation)
- manipulating cover, taking it off, recognizing spring, re-attaching it (goal-directed action plan)
- mounting cover back on, generating the correct action sequence (sequence generation)
- get better at this (learning)
- know about cover, screws, hard to turn (background knowledge)

[image: HowStuffWorks]

[image: mystery fandom theater 3000]

"embodied cognition"

- active perception for a purpose through which perceptual objects are grounded: sensory autonomy
- cognitive processes continuously updated and continuously linkable to motor processes: stability
- invariance and abstraction must retain this linkage to the sensory and motor surfaces
- cognition is sensitive to behavioral history, environmental context: learning, adaptation
- (cognition arises from neural systems)
- build in "back-ground knowledge" (Searle)

The embodiment hypothesis

- there is no particular boundary up to which, cognition is embodied and beyond which cognition is "truly higher cognition and loses the properties of embodiment
- => all cognition shares properties of embodied cognition

Neural dynamics hypothesis

- because embodied cognition unfolds in time, in interaction among processes, often including interaction (loop) between organisms and their environment
- => embodied cognition requires dynamics...

The goal of this second lecture is to show how the neural dynamic principles of DFT and embodied cognition may reach to higher cognition.

Higher dimensional fields

no problem ... selfstabilized peaks work just fine...

DPA in higher dimension

for example, 2D retinal space

New functions become available in higher dimensional fields

- example: color-space field
 - ID spatial location (for illustration)
 - ID color dimension (hue)
- visual input: 2D
- => 2D peaks

- separate fields for ID spatial location
- and ID color dimension (hue)
- => combined (bound) vs. separate representations

From 2D to ID: projection

- summing along the other dimension (marginalization)
- or taking the (soft)max

from ID to 2D: ridges

ridge localized along one dimension, constant along the other dimension

from ID to 2D: ridges

peaks at intersections of ridges: bind two dimensions

feature-binding

multiple ridges lead to binding problem = correspondence problem

visual search

combine ridge input with 2D input..

Example: Color-Space field

joint selection in
 2 ID fields, that
 are coupled
 across 2D field

eye movement: visual target from retinal representation to head-centered representation for reaching

- every gaze shift changes the spatial reference frame of the visual perception
- how to memorize locations when the reference frame keeps shifting?
- => transformation to gazeinvariant reference frame

- need mapping between different reference frame: retinocentric (moving with the eye) to body-centered (gaze-invariant)
- mapping is a variable shift, depends on current gaze direction
- \blacksquare as a formula x body = x retinal + x gaze
- but how to implement this in DNFs, using space code representations?

fixed mapping: neural projection in a neural network

steerable mapping that depends on gaze/eye position: that's the challenge

- expand into a 2D field
- free output connectivity to implement any mapping

bi-directional coupling: reversing the transformations

spatial remapping during saccades

predict retinal location following gaze shift

=> accounts for predictive updating of retinal representation

[Schneegans, Schöner, BC 2012]

Neural dynamics of sequence generation

Behavior and cognition consist of sequences of actions or thoughts

learn a serially ordered sequence from a single demonstration perform a serially ordered sequence with new timing

yellow-red-green-blue-red

yellow-red-green-blue-red

[Sandamirskaya, Schöner: Neural Networks 23:1163 (2010)]

Neural dynamics of sequence generation

represent the target color by a stable peak that resists attractors

red a distractor

red a target

Neural dynamics of sequence generation

when the sought color is found, switch to the next color by releasing the previous state from stability...through an instability

"Condition of Satisfaction" (CoS)

[Sandamirskaya, Schöner, 2010]

Camera image Color-space DF 80 70 60 Strength 100 10 color 50 150 color 100 Color histogram of the column space

ordinal stack

intentional state

condition of satisfaction (CoS)

Neuromorphic implementation

- by Yulia Sandamirskaya's group at INI Zürich.
- (see also http://sandamirskaya.eu)
- this is unpublished work to date...

Sequence learning and generation in neuromorphics

Sequence learning on chip

Sandamirskaya, unpublished

Architectures

Sequence of shifts of attention

[Tekülve, Schöner, 2016, after Zibner]

Building a scene memory

Reaching and grasping with online updating

Online reorganization of sequence

object recognition in a scene representation

[Zibner, Faubel, IROS 2011]

Higher cognition

Topics in Cognitive Science 9 (2017) 35-47

Copyright © 2017 The Authors. Topics in Cognitive Science published by Wiley Periodicals, Inc. on behalf of Cognitive Science Society

ISSN:1756-8757 print / 1756-8765 online

DOI: 10.1111/tops.12240

This article is part of the topic "Best of Papers from the Cognitive Science Society Annual Conference," Wayne D. Gray (Topic Editor). For a full listing of topic papers, see: http://onlinelibrary.wiley.com/doi/10.1111/tops.2017.9.issue-1/issuetoc.

A Neural Dynamic Model Generates Descriptions of Object-Oriented Actions

Mathis Richter, Jonas Lins, Gregor Schöner

Institut für Neuroinformatik, Ruhr-Universität Bochum

Received 7 October 2016; accepted 19 October 2016

Perceptually grounding language

- human language/thought in its simplest form is about "things" that are our there in our environment, perceivable, reachable by action
- perceptually grounding language:
 - "this cup is brown"
 - "the cup to the right of the book" (spatial language)
 - "the green ball moves away from the yellow ball" (verb)

Generating language

- human language/thought in its simplest form is about "things" that are our there in our environment, perceivable, reachable by action
- generating language
 - "this cup is brown"
 - "the cup to the right of the book" (spatial language)
 - "the green ball moves away from the yellow ball" (verb)

Processing steps entailed in grounding and generating language

(a)

- bringing objects into the perceptual/ attentional foreground
- transforming one object in a reference frame centered in the other object: coordinate transform
 Sebastian Schneegans talk
- applying spatial/verb "operators"=neural coupling structures that enable detection of relationship

[Lipinski et al., JEP:LMC 2012]

autonomous processing

- some processing steps must occur sequentially in time... e.g. because they entail testing hypotheses one after another
- the switch from one to the other must occur autonomously: as one process is "satisfied", it deactivates and leaves room for the next...
- ... or one processes may be "dissatisfied", also leading to a switch...

[Richter, Lins, Schneegans, Sandamirskaya, Schöner Proc. Cog Sci 2014]

"red to the left of green"

[Richter, Lins, Schöner TopiCS 2017]

Conclusion

- go a far way from the simple sensory motor cognition of Braitenberg vehicles
- toward higher cognition
- architectures
- in which instabilities are key to the autonomous generation of sequences of thoughts or actions