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embodied cognition

multi-dimensional fields for operations 

association 

coordinate transforms

sequential operation

architectures

higher cognition 



see and recognize the ball and the other 
players, estimate their velocities (perception, 
scene representation)

select a visual target, track it, controlling 
gaze (attention)

use working memory when players are out 
of view to predict where you need to look 
to update (working memory)

plan and control own motion, initiate and 
control kick, update movement plans any 
time (planning)

get better at playing (learning)

know goal of the game/rules, how hard the 
ball is, how fast players are (background 
knowledge)

Is soccer a cognitive?



explore scene, recognize screws, while keeping 
track of spatial arrangement (scene representation, 
coordinate transforms)

plan action, find tools, apply them to remembered 
locations, updated by current pose of toaster 
(working memory, scene representation)

manipulating cover, taking it off, recognizing spring, 
re-attaching it (goal-directed action plan)

mounting cover back on, generating the correct 
action sequence (sequence generation) 

get better at this (learning)

know about cover, screws, hard to turn (background 
knowledge)

[image: mystery fandom theater 3000]

[image: HowStuffWorks]

Repairing a toaster is cognition
but also still embodied



“embodied cognition”

active perception for a purpose through which 
perceptual objects are grounded: sensory 
autonomy

cognitive processes continuously updated and 
continuously linkable to motor processes: stability 

invariance and abstraction must retain this linkage 
to the sensory and motor surfaces 

cognition is sensitive to behavioral history, 
environmental context: learning, adaptation

(cognition arises from neural systems)

build in “back-ground knowledge” (Searle)



The embodiment hypothesis

there is no particular boundary up to which, 
cognition is embodied and beyond which 
cognition is “truly higher cognition and loses the 
properties of embodiment 

=> all cognition shares properties of embodied 
cognition



Neural dynamics hypothesis

because embodied cognition unfolds 
in time, in interaction among 
processes, often including interaction 
(loop) between organisms and their 
environment 

=> embodied cognition requires 
dynamics...



The goal of this second lecture is 
to show how the neural dynamic 
principles of DFT and embodied 
cognition may reach to higher 

cognition. 



Higher dimensional fields

no problem ... self-
stabilized peaks work 
just fine...



DPA in higher dimension
for example, 2D retinal space

visual field location, although the RF of each neuron might be
broadly tuned to stimulus location.

For extrapolation, DPAs were obtained by replacing the neural
activity observed in other time intervals or in response to com-
posite stimuli.

Temporal evolution of the DPAs of elementary stimuli
The main emphasis of this study was to explore cortical interac-
tion processes. It appears conceivable that such processes can be
traced during the entire temporal structure of neuron responses
because of differences of time constants of excitatory and inhib-
itory contributions (Bringuier et al., 1999) and because of time-
delayed feedback (Dinse et al., 1990). Accordingly, as an impor-
tant prerequisite, time-resolved DPAs were constructed for a
number of subsequent time intervals after stimulus onset using
the firing rates within each time slice as weights. Figures 3 and 4

illustrate the temporal evolution of the DPAs from 30 to 80 msec
after stimulus onset for two selected elementary stimuli. There is
a remarkable spatial coherence of activity within the ensemble.
The gradual build-up and decay of activation were quite uniform
across the distributions of all elementary stimuli.

On average, the DPAs constructed by Gaussian interpolation
reached maximal level of activation 54 ! 4 msec after stimulus
onset as compared to 53 ! 5 msec for the OLE-derived DPAs
(see Fig. 9B). To quantitatively assess the accuracy with which the
DPAs represent the location of the elementary stimuli position
during the entire time course of responses analyzed (30–80
msec), we compared the position of the maximum of each DPA to
the respective stimulus position. Figure 5 plots these constructed
positions against the real stimulus positions. Results from both
reconstruction methods revealed that the DPAs represent stimu-
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Figure 3. Two-dimensional DPAs of adjacent elementary stimuli (top and bottom) derived by Gaussian interpolation. The DPAs were obtained for
consecutive intervals of 10 msec duration covering the period from 30 to 80 msec after stimulus onset. Same conventions as in Figure 2 B. Each example
was normalized separately. As for the OLE-derived DPAs (compare Fig. 4), the distributions grow and decay gradually, and their maximum is always
located near the position of the stimulus. Although the two stimuli are at neighboring locations, differences of the spatial representations are apparent
throughout the time course of the response. For all elementary stimuli, the average latency of maximal activation was 54 ! 4 msec.
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Figure 4. The temporal evolution of two OLE-derived DPAs of the same elementary stimuli (A, B, vertical lines indicate position) as shown in Figure
3. The DPAs are depicted in 10 msec time intervals covering the period from 30 to 80 msec. The distributions grow and decay, gradually reaching
maximum activity at 53 ! 5 msec (average of all seven elementary stimuli) after stimulus onset. The position of the maximum of each distribution closely
approximates the stimulus position of the elementary stimulus throughout the time course of the neural population response, yet less accurately in the
late time epoch.

9020 J. Neurosci., October 15, 1999, 19(20):9016–9028 Jancke et al. • Population Dynamics within Parametric Space
time

[Jancke et al., 1999]



New functions become available 
in higher dimensional fields

example: color-space field

1D spatial location (for illustration)

1D color dimension (hue)

visual input: 2D

=> 2D peaks

Space-Color Field

for now: 2D field, one spatial

dimension and one color dimension

color processing in visual cortex not

fully understood, but population

code over hue values is a reasonable

simplification

qualitatively same e↵ects as in 3D

field, but easier to visualize in 2D

Sebastian Schneegans (INI) Multi-Dimensional Fields December 5, 2013 7 / 37

[Slides adapted from Sebastian Schneegans, 
see Schneegans,  Lins, Spencer, Chapter 5 of Dynamic Field Theory-A Primer, OUP, 2015]



separate fields for1D 
spatial location

and 1D color dimension 
(hue)

=> combined (bound) vs. 
separate representations

Combined vs. Separate Feature Spaces

single high-dimensional

representation vs. separate

low-dimensional representations

low-dimensional fields much less

costly in terms of

computational/neural resources

but limited in their

representational power

Sebastian Schneegans (INI) Multi-Dimensional Fields December 5, 2013 9 / 37

[Slides adapted from Sebastian Schneegans, 
see Schneegans,  Lins, Spencer, Chapter 5 of Dynamic Field Theory-A Primer, OUP, 2015]



From 2D to 1D: projection

summing along the other 
dimension (marginalization)

or taking the (soft)max

Read-out from high-dimensional field

fields of di↵erent dimensionality

can interact with each other

read-out of one feature

dimension: integrate over

discarded dimensions

e.g. spatial readout:

IS(x) =

Z
f (uv (x , y))dy

often additional Gaussian

convolution in read-out for

smoothness (reflects synaptic

spread in biological system)

Sebastian Schneegans (INI) Multi-Dimensional Fields December 5, 2013 10 / 37

[Slides adapted from Sebastian Schneegans, 
see Schneegans,  Lins, Spencer, Chapter 5 of Dynamic Field Theory-A Primer, OUP, 2015]



from 1D to 2D: ridges
ridge localized along one dimension, constant along 
the other dimension

Ridge Inputs to Multi-Dimensional Fields

projection from 1D to 2D: ridge input

does only specify value in one dimension, homogeneous in the other

should typically not induce a peak by itself

Sebastian Schneegans (INI) Multi-Dimensional Fields December 5, 2013 11 / 37

[Slides adapted from Sebastian Schneegans, 
see Schneegans,  Lins, Spencer, Chapter 5 of Dynamic Field Theory-A Primer, OUP, 2015]



from 1D to 2D: ridges

peaks at intersections of 
ridges: bind two dimensions

Ridge Intersections

intersection of 1D ridges can

specify location in 2D

binding problem when multiple

items are present

Sebastian Schneegans (INI) Multi-Dimensional Fields December 5, 2013 12 / 37

[Slides adapted from Sebastian Schneegans, 
see Schneegans,  Lins, Spencer, Chapter 5 of Dynamic Field Theory-A Primer, OUP, 2015]



feature-binding

multiple ridges lead to binding 
problem = correspondence 
problem

Feature Conjunctions and Feature Binding

multiple ridges create additional

intersections

1D fields with multiple peaks do

not specify which features

belong together

combined representation

necessary to resolve feature

binding problem

Sebastian Schneegans (INI) Multi-Dimensional Fields December 5, 2013 13 / 37

[Slides adapted from Sebastian Schneegans, 
see Schneegans,  Lins, Spencer, Chapter 5 of Dynamic Field Theory-A Primer, OUP, 2015]



visual search

combine ridge input with 2D 
input.. 

Visual Search

combine top-down feature input

(1D) with bottom-up localized

input (2D)

read out spatial position of

matching item

Sebastian Schneegans (INI) Multi-Dimensional Fields December 5, 2013 14 / 37

[Slides adapted from Sebastian Schneegans, 
see Schneegans,  Lins, Spencer, Chapter 5 of Dynamic Field Theory-A Primer, OUP, 2015]



Example: Color-Space field

joint selection in 
2 1D fields, that 
are coupled 
across 2D field

Coupled Selection

joint selection in separate 1D fields, coupled via 2D field

Sebastian Schneegans (INI) Multi-Dimensional Fields December 5, 2013 15 / 37

[Slides adapted from Sebastian Schneegans, 
see Schneegans,  Lins, Spencer, Chapter 5 of Dynamic Field Theory-A Primer, OUP, 2015]



Coordinate transformations

eye movement: visual target from retinal 
representation to head-centered representation for 
reachingEye Movements and Reference Frames

limited visual acuity in periphery of the retina, eye movements to

perceive larger scenes, read, etc.

gaze direction depends on eye and head orientation, considered as

single variable in the following

Sebastian Schneegans (INI) Multi-Dimensional Fields December 5, 2013 23 / 37

[Slides adapted from Sebastian Schneegans, 
see Schneegans,  Chapter 7 of Dynamic Field Theory-A Primer, OUP, 2015]



every gaze shift changes the 
spatial reference frame of 
the visual perception 

how to memorize locations 
when the reference frame 
keeps shifting? 

=> transformation to gaze-
invariant reference frame 

Eye Movements and Reference Frames

limited visual acuity in periphery of the retina, eye movements to

perceive larger scenes, read, etc.

gaze direction depends on eye and head orientation, considered as

single variable in the following

Sebastian Schneegans (INI) Multi-Dimensional Fields December 5, 2013 23 / 37

[Slides adapted from Sebastian Schneegans, 
see Schneegans,  Chapter 7 of Dynamic Field Theory-A Primer, OUP, 2015]



coordinate transformations

need mapping between different reference frame: 
retinocentric (moving with the eye) to body-centered 
(gaze-invariant) 

mapping is a variable shift, depends on current gaze 
direction

as a formula x body = x retinal + x gaze

but how to implement this in DNFs, using space code 
representations? 

[Slides adapted from Sebastian Schneegans, 
see Schneegans,  Chapter 7 of Dynamic Field Theory-A Primer, OUP, 2015]



coordinate transformations

fixed mapping: neural projection 
in a neural network

steerable mapping that depends 
on gaze/eye position: that’s the 
challenge

Reference Frame Transformation

fixed mapping between fields: easy

but how to implement variable mapping (two input fields) using just

synaptic projections?

Sebastian Schneegans (INI) Multi-Dimensional Fields December 5, 2013 26 / 37

Reference Frame Transformation

fixed mapping between fields: easy

but how to implement variable mapping (two input fields) using just

synaptic projections?

Sebastian Schneegans (INI) Multi-Dimensional Fields December 5, 2013 26 / 37

[Slides adapted from Sebastian Schneegans, 
see Schneegans,  Chapter 7 of Dynamic Field Theory-A Primer, OUP, 2015]



coordinate transformations

expand into a 2D field

free output connectivity to 
implement any mapping

Reference Frame Transformation

solution:

expand into combined, higher-dimensional field

then can implement arbitrary (smooth) mappings from this field to

target representation

Sebastian Schneegans (INI) Multi-Dimensional Fields December 5, 2013 27 / 37

[Slides adapted from Sebastian Schneegans, 
see Schneegans,  Chapter 7 of Dynamic Field Theory-A Primer, OUP, 2015]



coordinate transformations

DNF Mechanism for Reference Frame Transformation

Sebastian Schneegans (INI) Multi-Dimensional Fields December 5, 2013 28 / 37

[Slides adapted from Sebastian Schneegans, 
see Schneegans,  Chapter 7 of Dynamic Field Theory-A Primer, OUP, 2015]



coordinate transformations

DNF Mechanism for Reference Frame Transformation

Sebastian Schneegans (INI) Multi-Dimensional Fields December 5, 2013 29 / 37

[Slides adapted from Sebastian Schneegans, 
see Schneegans,  Chapter 7 of Dynamic Field Theory-A Primer, OUP, 2015]



coordinate transformations

DNF Mechanism for Reference Frame Transformation

Sebastian Schneegans (INI) Multi-Dimensional Fields December 5, 2013 30 / 37

[Slides adapted from Sebastian Schneegans, 
see Schneegans,  Chapter 7 of Dynamic Field Theory-A Primer, OUP, 2015]



coordinate transformations

DNF Mechanism for Reference Frame Transformation

Sebastian Schneegans (INI) Multi-Dimensional Fields December 5, 2013 31 / 37

[Slides adapted from Sebastian Schneegans, 
see Schneegans,  Chapter 7 of Dynamic Field Theory-A Primer, OUP, 2015]



coordinate transformations
DNF Mechanism for Reference Frame Transformation

Sebastian Schneegans (INI) Multi-Dimensional Fields December 5, 2013 32 / 37

[Slides adapted from Sebastian Schneegans, 
see Schneegans,  Chapter 7 of Dynamic Field Theory-A Primer, OUP, 2015]



coordinate transformations

bi-directional 
coupling: reversing 
the transformations

Multi-Directional Transformations

Sebastian Schneegans (INI) Multi-Dimensional Fields December 5, 2013 33 / 37

[Slides adapted from Sebastian Schneegans, 
see Schneegans,  Chapter 7 of Dynamic Field Theory-A Primer, OUP, 2015]



spatial remapping during saccades
Case Study: Spatial Remapping during Saccades

Sebastian Schneegans (INI) Multi-Dimensional Fields December 5, 2013 34 / 37

[Slides adapted from Sebastian 
Schneegans, 
see Schneegans,  Chapter 7 of Dynamic 
Field Theory-A Primer, OUP, 2015]



Case Study: Spatial Remapping during Saccades

transformation fieldA

retinocentric field

gaze field

0° 30°-30°

0°
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body-centered field

Sebastian Schneegans (INI) Multi-Dimensional Fields December 5, 2013 35 / 37

[Slides adapted from Sebastian Schneegans, 
see Schneegans,  Chapter 7 of Dynamic 
Field Theory-A Primer, OUP, 2015]



Coordinate transformations

predict 
retinal 
location 
following 
gaze shift

[Schneegans, Schöner, BC 2012]



=> accounts for predictive updating of retinal representation

Case Study: Spatial Remapping during Saccades

Sebastian Schneegans (INI) Multi-Dimensional Fields December 5, 2013 36 / 37

[Schneegans, Schöner, BC 2012]



Behavior and 
cognition consist of 
sequences of 
actions or thoughts

vehicle

target 1

target 2

obstacles

target 13

Neural dynamics 
of sequence generation 



`

yellow-red-green-blue-red

learn a serially ordered 
sequence from a single 
demonstration

yellow-red-green-blue-red

perform a serially ordered 
sequence with new timing

[Sandamirskaya, Schöner: Neural Networks 23:1163 (2010)]



represent the target 
color by a stable peak 
that resists attractors 

vehicle

target 1

target 2

obstacles

target 13

Neural dynamics 
of sequence generation 



red a distractor red a target

[Sandamirskaya, Schöner: Neural Networks 23:1163 (2010)]



when the sought color 
is found, switch to the 
next color by releasing 
the previous state from 
stability…through an 
instability 

vehicle

target 1

target 2

obstacles

target 13

Neural dynamics 
of sequence generation 



“Condition of 
Satisfaction”

(CoS)

[Sandamirskaya, Schöner, 2010]

excites the corresponding memory node, which, in its turn,
provides an excitatory input to the ordinal node which is to
be activated next. The active ordinal node also projects onto
a single intention field defined over the dimension of color.
Which color each node activates is learned, or memorized,
in the training phase through a fast Hebbian learning
mechanism. The intention field is reciprocally coupled with
a two-dimensional space-color field, in which the spatial
dimension samples the horizontal axis of the camera
image. The space-color field receives ridge-input localized
along the color dimension, but not along space, from the
intention field. It also receives a two-dimensional space-
color input from the visual array. Where visual input
overlaps with the ridge, a peak is formed, the spatial pro-
jection of which specifies the visual angle under which an
object of the color being sought is located.

The space-color field projects along the spatial dimen-
sion onto the dynamics of heading direction, creating an
attractor that steers the robot to the detected object. As that

object is approached, its image grows in the robot’s visual
array. The condition-of-satisfaction field (top-right on
Fig. 8) is pre-activated by input from the intention field and
is pushed through the detection instability when the object
of the color being sought looms sufficiently large. This
brings about the transition to the next step in the sequence
as described in Section 3.3.

Before an object that matches the current intention has
been found, no peak exists in the space-color field. The
heading direction does not receive input at that time from
the space-color field and the vehicle’s navigation dynamics
is dominated by obstacle avoidance, which is implemented
using a standard dynamic method (Bicho, Mallet, &
Schöner, 2000). This results in the roaming behavior that
helps the robot search for objects of the appropriate color.

During teaching, the visual input from the object shown
to the robot is boosted enough to induce a peak in the space-
color field. This peak projects activation backwards onto the
intention field, where a peak is induced at the location that

Fig. 8. The architecture for a sequential color-search task on a Khepera robot. An active node of the ordinal dynamics projects its activation onto an intention field,
defined over color dimension. The intention field is coupled to the space-color field, which also receives visual input from the robot’s camera. An activation peak
in the space-color field drives the navigation dynamics of the robot, setting an attractor for its heading direction. The condition-of-satisfaction field is also defined
over color dimension and is activated when the object of the currently active color takes up a large portion of the camera image.

Y. Sandamirskaya et al. / New Ideas in Psychology xxx (2013) 1–1814

Please cite this article in press as: Sandamirskaya, Y., et al., Using Dynamic Field Theory to extend the embodiment stance toward
higher cognition, New Ideas in Psychology (2013), http://dx.doi.org/10.1016/j.newideapsych.2013.01.002



Color
distribution

Camera
image

distr

Color-space
field

0 50 100 150
0

10

20

30

40

50

60

70

80

Hue

V
a
lu
e

Camera image

Color-space DF

Color histogram of the column
color

color

space

St
re
ng

th



2D feature-space fieldintentional state

color

condition of satisfaction (CoS)ordinal stack

colorangle



Neuromorphic implementation

by Yulia Sandamirskaya’s group at INI Zürich.

(see also http://sandamirskaya.eu )

this is unpublished work to date… 

http://sandamirskaya.eu


Ordinal nodes

Memory nodes

Adaptive projections

CoS node

Content DNF

Sensory-motor systemAction systemCoS

Ordinal populations

Memory populations

Plastic synapses

CoS 
population

Content population

Content population,
inhibition

Sensory-motor systemAction systemCoS

Neural-Dynamic Architecture

Spiking NN architecture
Neuromorphic chip 

Connectivity matrix

Robot

Validation
and model

improvement

System development Robotic system

Sequence learning and generation in neuromorphics

Sandamirskaya, 
Schöner, 2010

Sandamirskaya et al, in press
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Architectures



Sequence of shifts of attention

[Tekülve, Schöner, 2016, after Zibner]



Building a scene memory

[Zibner 2015]



Reaching and grasping 
with online updating 

perception: 

scene representation

object classification and pose estimation

autonomous sequencing

action: reach and grasp

[Knips et al., ICRA 2014]



Online reorganization of sequence



object recognition in a scene 
representation

[Zibner, Faubel, IROS 2011]



Higher cognition

Topics in Cognitive Science 9 (2017) 35–47
Copyright © 2017 The Authors. Topics in Cognitive Science published by Wiley Periodicals, Inc. on behalf of
Cognitive Science Society
ISSN:1756-8757 print / 1756-8765 online
DOI: 10.1111/tops.12240
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A Neural Dynamic Model Generates Descriptions of
Object-Oriented Actions
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Abstract

Describing actions entails that relations between objects are discovered. A pervasively neural
account of this process requires that fundamental problems are solved: the neural pointer problem,
the binding problem, and the problem of generating discrete processing steps from time-continuous
neural processes. We present a prototypical solution to these problems in a neural dynamic model
that comprises dynamic neural fields holding representations close to sensorimotor surfaces as well
as dynamic neural nodes holding discrete, language-like representations. Making the connection
between these two types of representations enables the model to describe actions as well as to per-
ceptually ground movement phrases—all based on real visual input. We demonstrate how the
dynamic neural processes autonomously generate the processing steps required to describe or
ground object-oriented actions. By solving the fundamental problems of neural pointing, binding,
and emergent discrete processing, the model may be a first but critical step toward a systematic
neural processing account of higher cognition.
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Perceptually grounding language

human language/thought in its 
simplest form is about “things” that 
are our there in our environment, 
perceivable, reachable by action

perceptually grounding language: 

“this cup is brown”

“the cup to the right of the book” (spatial 
language)

“the green ball moves away from the yellow 
ball” (verb)



Generating language

human language/thought in its 
simplest form is about “things” that 
are our there in our environment, 
perceivable, reachable by action

generating language

“this cup is brown”

“the cup to the right of the book” (spatial 
language)

“the green ball moves away from the yellow 
ball” (verb)



circle in the top left in the array) reflects the attentional selection of an object (the red ball in
the visual scene shown at the bottom). How spatial attention is guided by the color nodes
will be explained later. In perceptual grounding (left column), a color concept is initially
active (e.g., from language related processes) and drives visual attention to a matching
object in the scene. In describing (right column), an object is initially attended (e.g., based
on salience) and drives the activation of a matching color concept.

Lifting such notions to relations, such as the initial example of “the bookshelf is to the left
of the desk,” requires that a set of coordinated processing steps (Logan & Sadler, 1996) be
realized neurally: (a) binding each object to a role (here, the desk is the reference object, the
bookshelf is the target object); (b) centering the reference frame on the reference object; and
(c) applying a relational operator (here, “to the left of”) to the target object in that frame.

A neural process implementation of these steps requires that the following problems be
solved; they reflect fundamental constraints of neural processing that must be faced in
neural accounts of higher cognition.

Fig. 1. Schematic illustration of the processes of grounding (left column, orange arrows) and describing
(right column, violet arrows). In the top row, activation values above and below the threshold (gray line)
denote active and inactive nodes, respectively. In the middle, the activation of the two-dimensional field is
illustrated using a color-map: blue areas are below threshold; yellow areas are above threshold.

M. Richter, J. Lins, G. Sch€oner / Topics in Cognitive Science 9 (2017) 37



Processing steps entailed in grounding 
and generating language

bringing objects into the perceptual/
attentional foreground 

transforming one object in a 
reference frame centered in the 
other object: coordinate transform 
=> Sebastian Schneegans talk

applying spatial/verb 
“operators”=neural coupling 
structures that enable detection of 
relationship
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into the reference and target field and enable these fields to track moving objects even if
spatial attention is currently focused elsewhere.

3.2. Attention

The core of the attentional system consists of two three-dimensional attention fields.
They are defined over the same dimensions as the two perception fields, but their activa-
tion remains below threshold unless additional input arrives from a feature attention field
or a spatial attention field.

Fig. 2. Architecture with activation snapshots while it is generating a phrase about a video. Fields are shown
as color-coded activation patterns; for three-dimensional fields, two-dimensional slices are shown. Node acti-
vation is denoted in opacity-coded circles. Spatial templates are illustrated as color-coded weight patterns
(bottom left). Excitatory synaptic connections are denoted by lines with arrowheads, inhibitory connections
by lines ending in circles. Transformations to and from polar coordinates are marked with a “T.” Steerable
neural mappings are denoted as diamonds.
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autonomous processing
some processing steps must occur 
sequentially in time… e.g. because 
they entail testing hypotheses one 
after another  

the switch from one to the other 
must occur autonomously: as one 
process is “satisfied”, it deactivates 
and leaves room for the next…

… or one processes may be 
“dissatisfied”, also leading to a 
switch…
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Abstract

Resolving relational spatial phrases requires that a coherent
mapping emerges between a visual scene and a triad of two
objects and a relational term. We present a theoretical ac-
count that solves this problem based on neural principles. A
neural dynamic architecture represents perceptual information
in activation fields that make detection and selection deci-
sions through neural interaction. Activation nodes and their
connectivity to the perceptual fields represent concepts. Dy-
namic instabilities enable the autonomous sequential organi-
zation of the processing steps needed to resolve relational spa-
tial phrases. These include bringing visual objects into the at-
tentional foreground, performing spatial transformations, and
making matching decisions. We demonstrate how the neural
architecture may autonomously test different hypotheses to re-
solve relational spatial phrases. We discuss how this neural
process account relates to existing theoretical perspectives and
how to move beyond the entry point sketched here.
Keywords: spatial language; sequence generation; autonomy;
hypothesis testing; neural dynamics; Dynamic Field Theory

Introduction
Language enables humans to communicate about shared en-
vironments. For instance, I may use language to direct your
attention to an object in a visual scene. When several simi-
lar objects are visible such as in Fig. 1a, using object iden-
tity (“cup”) or feature (“red”) alone is not sufficient. A rela-
tional spatial phrase, for example “the red cup to the left of
the green cup”, resolves ambiguity in such situations. Even in
the scene in Fig. 1b, in which no object can be singled out by
feature reference, this phrase uniquely specifies one of them.
A typical relational phrase like the one above consists of a

(a) (b)

Fig. 1: Visual scenarios affording the use of spatial language.

target (the red cup) and a reference (the green cup), relative
to which a relational term (to the left) is applied. Interpret-
ing such a phrase may require that different pairs of objects
be examined. Psychophysical evidence from visual search
tasks suggests that this happens in sequence rather than in

parallel (Logan, 1994). Selecting the reference and target ob-
ject of such a pair also appears to happen sequentially. This
is suggested by characteristic shifts of attention found using
EEG measurements (Franconeri, Scimeca, Roth, Helseth, &
Kahn, 2012), eye-tracking (Burigo & Knoeferle, 2011), and
behavioral cuing (Roth & Franconeri, 2012).

The processing steps involved in interpreting a relational
spatial phrase include binding each object to its role, cen-
tering the reference frame on the reference object, mapping
the spatial term onto this reference frame, and assessing the
match of the target object with the spatial term (Logan &
Sadler, 1996). While such discrete processing steps appear
natural in information processing terms, they require an ex-
planation in neural systems. At the population level that is
relevant to behavior, neural activity evolves continuously in
time. The flow of activation is determined by the structure of
neural networks. Flexibility is thus an achievement in neural
processing, not a given. In previous work we have provided
the basis for realizing some of these processing steps in ac-
cordance with neural principles (Lipinski, Schneegans, San-
damirskaya, Spencer, & Schöner, 2012). This work is based
on the framework of Dynamic Field Theory (DFT; Schnee-
gans & Schöner, 2008), in which activation peaks are units of
representation. The model addresses the attentive selection
of target and reference objects and proposes a neural archi-
tecture that transforms the location of the target object into a
frame centered on the reference object. Spatial terms are en-
coded relative to that frame as patterned neural connections.
While the neural processes of bringing objects into the at-
tentional foreground and activating spatial terms unfold au-
tonomously, the sequential order of these different operations
is controlled through signals from outside the system.

In this paper we provide a fully autonomous neural dy-
namic architecture that generates sequences of processing
steps to interpret and generate relational spatial language.
Within the framework of DFT, we take inspiration from ear-
lier work on the autonomous generation of behavioral se-
quences (Sandamirskaya & Schöner, 2010; Richter, San-
damirskaya, & Schöner, 2012). The key idea is that elemen-
tary processing steps are characterized by certain aspects that
can be implemented in a neural system: The neural represen-
tation of an intention drives activation in those neural struc-
tures that are relevant for executing the processing step. The
resulting changes in activation states are detected through a
condition of satisfaction, which indicates the successful com-
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“red to the left of green”
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Conclusion

…. go a far way from the simple sensory 
motor cognition of Braitenberg vehicles

… toward higher cognition

… all neural dynamics, gathered into 
architectures 

… in which instabilities are key to the 
autonomous generation of sequences of 
thoughts or actions 


