
Chapter 11

Spiking Network Dynamics: GLM

11.1 Motivation

The number of neurons that can be simultaneously recorded is exponentially growing (Steven-
son and Kording 2011). The doubling time is about 7 years. With this growing amount of
data it is necessary to design good questions and use good methods.
A particularly interesting question for such a large data set is the encoding ) question. How
are stimuli encoded in spike trains. If

11.2 Definition of the sSRM0

The stochastic spike response model (sSRM) describes how the input spike trains x
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where ⇤ denotes a convolution, i,e, ( ⇤ I) (t) =
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denotes the PSP kernel
from presynaptic neuron j. For simplicity we will assume that synaptic current is represented
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Figure 11.1: A Membrane potential trace of the SRM. B. In the SRM, the probability of firing
is a function of the membrane potential u.

As its name indicate, the spike emission process in the sSRM is not deterministic, but proba-
bilistic. Let N(t) be a counting process associated to the spike train y, i.e. N(t) =

R
t

0 y(s)ds.

72
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dN(t) ⇠ Poisson(dN(t); g(u(t))dt) (11.2)
where g(u) is a monotonically increasing function. PICTURE. dt is an infinitesimal time step
and where the Poisson distribution is given by

Poisson(k; �) =

�k

e

��

k!

(11.3)

Or written differently, we have

p(dN(t)|u(t)) = (g(u(t))dt)dN(t)
(1 � g(u(t))dt)1�dN(t) (11.4)

In class exercise: convince yourself that this is the case (hint: because dt is small, then
dN(t) 2 {0, 1})
Exercise 11.1. Check that the Poisson distribution is well normalized

Solution 11.1.
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Exercise 11.2. Calculate the mean and variance of the Poisson distribution

Solution 11.2. The mean is given by
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The second order moment is calculated as
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So the variance is given by ⌦
k2
↵
� hki2 = � (11.8)

which is the same as the expectation.

11.3 Probability density function

Exercise 11.3. Calculate the pdf p(yT |uT

) where yT = {y(t)|t 2 [0, T ]} and uT

= {u(t)|t 2
[0, T ]}
Solution 11.3. Let n denote the number of bins, such that T = ndt and let t

k

= kdt. Let
us further denote y = (y(t1), . . . , y(t

n

)) and u = (u(t1), . . . , u(t
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)). Then, because of the
conditional independence, we have
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In the limit of small dt, we can replace the sum by an integral and express the log-probability
density (i.e. dividing by dtN(T )) as

p(yT |uT

) = exp

✓Z
T

0
log (g(u(t))) y(t) � g(u(t))dt

◆
(11.9)

11.4 Definition of the sSRM (with spike-afterpotential and adap-
tation)

PICTURE of the kernels
Two main ingredients were missing in the sSRM0: the spike-afterpotential and the adaptation.
The definition of the membrane potential can be extended as

u(t) = urest +
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w
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) (t) + ( ⇤ I) (t) + (⌘ ⇤ y) (t) (11.10)

where the kernel ⌘ describes the spike after-potential. So now the membrane potential of a
given neuron depends on its past spiking activity. The second important missing part is the
refractoriness or adaptation part. This can be included in the spiking mechanism as follows

dN(t) ⇠ Poisson(dN(t); g(u(t), yT
�
dt) (11.11)

A convenient choice for this new intensity function g is

g(u(t), yT
�
) = g̃(u(t))R(yT

�
) (11.12)

An absolute refractory period can be expressed as

R =

⇢
0 if t � ˆt < �

1 else

(11.13)

where ˆt = max{tf |dN(tf ) = 1, tf < t} is the last spike of neuron y before t.
PICT refractory and gain function

11.5 Further properties of the sSRM

Exercise 11.4. Show that the PDF in this case is identical to Eq. (11.9) up to the redefinition
of g and u.

Solution 11.4. Hint: use the fact that p(x1:n) =

Q
n

j=1 p(x
j

|x1:j�1) (with the convention that
p(x1|x1:0) = p(x1)).

Exercise 11.5. Calculate the inter-spike interval distribution (ISI) for the sSRM with ⌘ = 0

and R is such that there is an absolute refractory period of � ms.

Solution 11.5.

Exercise 11.6. Calculate the F-I curve for the same conditions as the exercise above.

Solution 11.6.

Exercise 11.7. Network model of sSRM. Let us consider a recurrent network of N neurons
whose activity is denoted by y = (y1, . . . , yN ). Calculate the expected firing rate ⌫ = hyi as
a function of the input firing rates ⇢ = hxi where x = (x1, . . . , xM

) denotes the input spiking
activity.
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Solution 11.7.

Exercise 11.8. Calculate the expected firing rate and the correlation matrix C(⌧) (where
C
ij

(⌧) = hx
i

(t)x
j

(t + ⌧)i) of n independent Poisson neurons. By definition a Poisson neuron
is such that its Dirac delta spike train is given by x
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dt) (11.14)

Solution 11.8. The mean is given by
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In contrary, when i = j and t = t0, we have
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All together we have 8i, j and 8⌧ :
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Exercise 11.9. Calculate the mean and variance of the membrane potential in the SRM0

model, i.e. assuming k = 0 and ⌘ = 0 and assuming that the inputs are n independent Poisson
processes with firing rates ⇢

i

, i = 1, . . . , n.

Solution 11.9. The mean is given by
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where ✏̄ =
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where ¯✏2 =

R1
0 ✏2(s)ds.
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With similar calculations as in Ex. 11.9, we can calculate the covariance of the membrane
potential of a neuron that receives N independent Poisson spike trains

h�u(t)�u(t + ⌧)i =

X

i

w2
i

⇢
i

Z 1

0
✏(s)✏(s + ⌧)ds (11.21)

Note that if ✏(s) = ✏0 exp(�s/⌧
m

)⇥(s) and if the number of inputs (which have non-zero weight
w
j

and non-zero firing rate ⇢
j

) is large, then from the central limit theorem, the dynamics of
the membrane potential is similar to that of an Ornstein-Uhlenbeck process:

du = �u � ū

⌧
dt + �dW (11.22)

where ū = hui and � =

p
2 h�u2i /⌧

11.6 Definition of the GLM

between receptive field centres15.We found that fitted stimulus filters
have smaller surrounds than the spike-triggered average, indicating
that a portion of the classical surround can be explained by interac-
tions between cells21 (see Supplementary Information).

To assess accuracy in capturing the statistical dependencies in
population responses, we compared the pairwise cross-correlation
function (CCF) of RGCs and simulated model spike trains (Fig. 2).
For nearby ON–ON and OFF–OFF pairs, the CCF exhibits a sharp
peak at zero, indicating the prevalence of synchronous spikes; how-
ever, for ON–OFF pairs, a trough at zero indicates an absence of
synchrony. For all 351 possible pairings, the model accurately repro-
duces the CCF (Fig. 2a–c, e, f).

To examine whether inter-neuronal coupling was necessary to
capture the response correlation structure, we re-fitted the model
without coupling filters (that is, so that each cell’s response depends
only on the stimulus and its own spike-train history). This
‘uncoupled model’ assumes that cells encode the stimulus indepen-
dently, although correlations may still arise from the overlap of
stimulus filters. However, the uncoupled model fails to reproduce
the sharp CCF peaks observed in the data. These peaks are also absent
from CCFs computed on trial-shuffled data, indicating that fast-
timescale correlations are not stimulus-induced and therefore cannot
be captured by any independent encoding model.

Higher-order statistical dependencies were considered by inspect-
ing correlations in three-neuron groups: triplet CCFs show the spike
rate of one cell as a function of the relative time to spikes in two other
cells (Fig. 2e–g)15. For adjacent neurons of the same type, triplet CCFs
have substantial peaks at zero (‘triplet synchrony’), which are well
matched by the full model.

Although the full and uncoupled models differ substantially in
their statistical dependencies, the two models predict average light
responses in individual cells with nearly identical accuracy, capturing
80–95% of the variance in the peri-stimulus time histogram (PSTH)
in 26 out of 27 cells (Fig. 3a–c). Both models therefore accurately
describe average single-cell responses to new stimuli. However, the
full model achieves higher accuracy, predicting multi-neuronal spike
responses on a single trial (86 3%more bits per spike, Fig. 3d). This
discrepancy can be explained by the fact that noise is shared across

neurons. Shared variability means that population activity carries
information about a single cell’s response (owing to coupling
between cells) beyond that provided by the stimulus alone.
Individual neurons therefore appear less noisy when conditioned
on spiking activity in the rest of the population than they appear in
raster plots.

We measured the effect of correlations on single-trial, single-cell
spike-train prediction by using the model to draw samples of a single
cell’s response given both the stimulus and the spiking activity in the
rest of the population on a single trial (Fig. 3e, f). Averaging the
resulting raster plot gives a prediction of the cell’s single-trial spike
rate, or ‘population-conditioned’ PSTH for a single trial. We com-
pared these predictions with the cell’s true spike times (binned at
2ms) across all trials and found that on nearly every trial, the model-
based prediction is more highly correlated with the observed spikes
than the neuron’s full PSTH (Fig. 3g). Note that the full PSTH
achieves the highest correlation possible for any trial-independent
prediction. Thus, by exploiting the correlation structure, the coupled
model predicts single-neuron spike times more accurately than any
independent encoding model.

Although the full model accurately captures dependencies in the
activity of RGCs, it is not obvious a prioriwhether these dependencies
affect the amount of sensory information conveyed by RGC res-
ponses. In principle, the correlation structure could be necessary to
predict the responses, but not to extract the stimulus information
that the responses carry13. To examine this issue directly, we used the
full and uncoupled models to perform Bayesian decoding of the
population response (Fig. 4a), which optimally reconstructs stimuli
given an accurate description of the encoding process. For compar-
ison, we also performed Bayesian decoding under a Poisson (that is,
LNP) model and optimal linear decoding6.

Each decoding method was used to estimate short (150-ms) seg-
ments of the stimulus given all relevant spike times from the full popu-
lation (Fig. 4b). Bayesian decoding under the coupled model recovers
20% more information than Bayesian decoding under the uncoupled
model, indicating that knowledge of the correlation structure is critical
for extracting all sensory information contained in the population
response. This improvement was invariant to enhancements of the
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Figure 1 | Multi-neuron encoding model and fitted parameters. a, Model
schematic for two coupled neurons: each neuron has a stimulus filter, a post-
spike filter and coupling filters that capture dependencies on spiking in other
neurons. Summed filter output passes through an exponential nonlinearity
to produce the instantaneous spike rate. b, Mosaics of 11 ON and 16 OFF
retinal ganglion cell receptive fields, tiling a small region of visual space.
Ellipses represent 1 s.d. of a Gaussian fit to each receptive field centre; the
square grid indicates stimulus pixels. c–e, Parameters for an example ON
cell. c, Temporal and spatial components of centre (red) and surround (blue)
filter components, the difference of which is the full stimulus filter.

d, Exponentiated post-spike filter, which may be interpreted as multiplying
the spike rate after a spike at time zero. It produces a brief refractory period
and gradual recovery (with a slight overshoot). e, Connectivity and coupling
filters from other cells in the population. The black filled ellipse is this cell’s
RF centre, and blue and red lines show connections from neighbouring OFF
and ON cells, respectively (line thickness indicates coupling strength).
Below, exponentiated coupling filters show the multiplicative effect on this
cell’s spike rate after a spike in a neighbouring cell. f–h, Analogous plots for
an example OFF cell.
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Figure 11.2: .

The Generalized linear model (GLM) is a model that computes the response of a network of
spiking neurons to some stimulus. This model is structurally very similar to a network model
of sSRM neurons. There are two main conceptual differences

• the input currents defined for the sSRM is replaced by an external stimulus (e.g. movies
or sound)

• the variable u in the GLM can be seen as an internal variable and does not need to be
identified to the membrane potential

So the GLM defines a set of N internal variables u
i

, i = 1, . . . , N which are given by

u
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w
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⇤ I) (t) (11.23)

and the spiking probability is similar to the one for the sSRM.
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