Chapter 11

Spiking Network Dynamics: GLM

11.1 Motivation

The number of neurons that can be simultaneously recorded is exponentially growing (Steven-
son and Kording 2011). The doubling time is about 7 years. With this growing amount of
data it is necessary to design good questions and use good methods.

A particularly interesting question for such a large data set is the encoding ) question. How
are stimuli encoded in spike trains. If

11.2 Definition of the sSRMO0

The stochastic spike response model (sSRM) describes how the input spike trains z;(t) =
>0 6(t — tj-c ) as well as the external input current I are converted into (delta Dirac) spiking
J

activity y = >_,; 6(t — /). Let u denote the neuronal membrane potential which is linear in
the input currents:

_urest+zwj ej xx;) (t) + (k* 1) (t) (11.1)

where * denotes a convolution, i,e, (k * I) ( fo I(t — s)ds. €; denotes the PSP kernel
from presynaptic neuron j. For simphc1ty we Wlll assume that synaptic current is represented
as a Dirac spike train z; = ; 6(t — tj)
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Figure 11.1: A Membrane potential trace of the SRM. B. In the SRM, the probability of firing
is a function of the membrane potential w.

As its name indicate, the spike emission process in the sSRM is not determinibtic but proba—
bilistic. Let N(t) be a counting process associated to the spike train y, i.e. N(¢ fo
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dN (t) ~ Poisson(dN (t); g(u(t))dt) (11.2)

where g(u) is a monotonically increasing function. PICTURE. dt is an infinitesimal time step
and where the Poisson distribution is given by

A=A
k!

Poisson(k; A) = (11.3)

Or written differently, we have

PAN(®)]u()) = (9(u())dt)™ ) (1 = gu(t))dt)' =N (11.4)
In class exercise: convince yourself that this is the case (hint: because dt is small, then
dN(t) € {0,1})

Exercise 11.1. Check that the Poisson distribution is well normalized

Solution 11.1. -
D plk)=ele =1 (11.5)
k=0

Exercise 11.2. Calculate the mean and variance of the Poisson distribution

Solution 11.2. The mean is given by

e e k) ka2 o0 Ne—lg—A
_ — A — 11.
> k() =)~ =2 R (11.6)
k=0 k=0 k=1
The second order moment is calculated as
0 k2)\k - )\k 1 —)\
> k) = Z AZ
k=0 k=0 !
— (k — 1)Ak_1 AR—1
Y —-A (
¢ (; -1 -1
= X ()\e’\ + e’\> =X+ (11.7)
So the variance is given by
(k?) — (k)* = X (11.8)

which is the same as the expectation.

11.3 Probability density function
Exercise 11.3. Calculate the pdf p(y” |u?) where y©' = {y(t)|t € [0,T]} and uT = {u(t)|t €
[0, 77}

Solution 11.3. Let n denote the number of bins, such that T = ndt and let t;, = kdt. Let
us further denote y = (y(t1),...,y(tn)) and u = (u(ty),...,u(tn)). Then, because of the
conditional independence, we have

p(ylu) = ][ Poisson (dN(tx); glulty))dt)

ty

= H Poisson (1; g(u(ty))dt) H Poisson (0; g(u(t))dt)
to=tf tr#tf

= Hg (t))dt - exp( Zg )
tf
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In the limit of small dt, we can replace the sum by an integral and express the log-probability
density (i.e. dividing by dtN ™)) as

T
T T = €ex (0] u — gl\u .
ply" Ju") = p(/o log (g(u(t))) y(t) — g( (t))dt> (11.9)

11.4 Definition of the sSSRM (with spike-afterpotential and adap-
tation)

PICTURE of the kernels
Two main ingredients were missing in the sSSRMO: the spike-afterpotential and the adaptation.
The definition of the membrane potential can be extended as

U(t) = Urest + ij (ej xa;) (t) + (k1) (t) + (n *y) (t) (11.10)

where the kernel n describes the spike after-potential. So now the membrane potential of a

given neuron depends on its past spiking activity. The second important missing part is the

refractoriness or adaptation part. This can be included in the spiking mechanism as follows
dN (t) ~ Poisson(dN (t); g(u(t),y? dt) (11.11)

A convenient choice for this new intensity function g is

gu(t),y" ) = glu(t)Ry" ) (11.12)

An absolute refractory period can be expressed as

R:{o if t—t<A (11.13)

1 else

where £ = max{t/|dN(t/) = 1,t/ < t} is the last spike of neuron y before .
PICT refractory and gain function

11.5 Further properties of the sSSRM

Exercise 11.4. Show that the PDF in this case is identical to Eq. (11.9) up to the redefinition
of g and wu.

Solution 11.4. Hint: use the fact that p(z1.n) = [[j—; p(xj]z1.5-1) (with the convention that
p(z1]z10) = p(1))-

Exercise 11.5. Calculate the inter-spike interval distribution (ISI) for the sSRM with n = 0
and R is such that there is an absolute refractory period of A ms.

Solution 11.5.
Exercise 11.6. Calculate the F-I curve for the same conditions as the exercise above.
Solution 11.6.

Exercise 11.7. Network model of sSRM. Let us consider a recurrent network of N neurons
whose activity is denoted by'y = (yi1,...,yn). Calculate the expected firing rate v = (y) as
a function of the input firing rates p = (x) where x = (x1,...,x)) denotes the input spiking
activity.
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Solution 11.7.

Exercise 11.8. Calculate the expected firing rate and the correlation matriz C(7) (where
Cij(1) = (xs(t)xj(t + 7)) ) of n independent Poisson neurons. By definition a Poisson neuron
is such that its Dirac delta spike train is given by x;(t) = dN;(t)/dt where dN;(t) drawn from

dN;(t) ~ Poisson(dN;(t); pidt) (11.14)

Solution 11.8. The mean is given by

<le(t)> _ pidt _

i = i 11.1
fai(1) i _ el (11.15)
When i # j and t # t', then dN;(t) and dN;(t') are independent, we therefore have
dN;(t)dN,(t' dN;(t)) (dN;(t
dt dt
In contrary, when i = j and t =t', we have
ooy _ SANE®)  pRdt? +pidt  ,  pi

All together we have Vi, j and V1:

Cij (1) = (zi(t)z;(t + 7)) = pipj + 0i0(T)pi (11.18)

Exercise 11.9. Calculate the mean and variance of the membrane potential in the SRMj
model, i.e. assuming k = 0 and n = 0 and assuming that the inputs are n independent Poisson
processes with firing rates p;, 1 =1,...,n.

Solution 11.9. The mean is given by

<w=um+zwmma@

J

= Upest + Y wjpjE (11.19)
j

where € = [ €(s)ds. Let A = u— (u) and Axj = xj — p;. The variance of the membrane
potential s given by

2

<Au2> = < Z'LUj(A{Ej * 6)(t) >
J
= Z wiwj (Ax; * €)(t)Axj *x €)(t))
= ZZJ:UJ{U)]' /OOO /OOO 6(8)6(8/) <A1‘Z(t - S)Al’j(t _ S/)>
- ngpiea (11.20)

where €2 = o €(s)ds.
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With similar calculations as in Ex. 11.9, we can calculate the covariance of the membrane
potential of a neuron that receives IV independent Poisson spike trains
o
(Au(t)Au(t + 7)) = Z w?p; / e(s)e(s + 71)ds (11.21)

- 0

7
Note that if €(s) = g exp(—s/7m)O(s) and if the number of inputs (which have non-zero weight
w; and non-zero firing rate p;) is large, then from the central limit theorem, the dynamics of
the membrane potential is similar to that of an Ornstein-Uhlenbeck process:

U—"u

du = — dt + odW (11.22)

T

where @ = (u) and 0 = /2 (Au?) /7
11.6 Definition of the GLM
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Figure 11.2: .

The Generalized linear model (GLM) is a model that computes the response of a network of
spiking neurons to some stimulus. This model is structurally very similar to a network model
of sSSRM neurons. There are two main conceptual differences

e the input currents defined for the sSRM is replaced by an external stimulus (e.g. movies
or sound)

e the variable v in the GLM can be seen as an internal variable and does not need to be
identified to the membrane potential

So the GLM defines a set of IV internal variables u;, ¢ = 1,..., N which are given by
wi(t) =D wij (&g y;) () + (s + T) (1) (11.23)
J

and the spiking probability is similar to the one for the sSRM.
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