
Chapter 12

Learning with the GLM

12.1 Introduction on learning concepts

See learning concepts in Ch 13 of (Barber 2012):

¥ supervised learningp(y|x; ✓)

¥ reward-based learning!R"

¥ unsupervised learningp(y|✓)

Other forms exists such as active learning or semi-supervised learning. In this section, we will
see that the learning rule in the di!erent scenarios are very similar and do have some biological
support.

12.2 Note on log-concavity of the PDF

Let L be the log-likelihood deÞned as the logarithm of the probability density function given
in Eq. (11.9), i.e.

L(✓) = log p(yT ) =

Z
T

0
log (g

✓1 (u✓2 (t))) y(t) # g
✓1 (u✓2 (t))dt (12.1)

where✓ = (✓1, ✓2) $ ⇥ are the parameters of the model. How to guarantee thatL(✓) does not
have local maxima? A su"cient condition is that L is concave (see Fig. 12.1)
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Figure 12.1: For a concave function,f(x̄) % (1# ↵)f(x1)+↵f(x2) where x̄ = (1# ↵)x1 +↵x2.
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Definition 12.1. C is a convex set if(1 # ↵)x + ↵y $ C &x, y $ C and &↵ $ [0, 1].

Definition 12.2. A function f : C ' R ( R is concave on the (convex) setC if

f((1 # ↵)x1 + ↵x2) % (1 # ↵)f(x1) + ↵f(x2) &x1, x2 $ C ↵ $ [0, 1] (12.2)

f is strictly convex if

f((1 # ↵)x1 + ↵x2) > (1 # ↵)f(x1) + ↵f(x2) &x1, x2 $ C ↵ $ [0, 1] (12.3)

Property 12.1. A twice di!erentiable function f is concave i! f !!
(x) ) 0, &x $ C.

Proof 12.1. LetÕs prove "f(x) concave * f !!
(x) < 0". Let ↵ = 0.5, x1 = x # �x and

x2 = x + �x. From concavity, we have

f((1 # ↵)x1 + ↵x2) = f(x) %
1

2

f(x + �x) +

1

2

f(x # �x) (12.4)

Hence
f !!

(x) = lim

�x" 0

1

�x2
(f(x + �x) # 2f(x) + f(x # �x)) ) 0 (12.5)

Property 12.2. Concavity is preserved under addition, i.e.f1, f2 are concave, thenf1 + f2
is concave.

Proof 12.2. Sincef !!
1 (x) ) 0 and f !!

2 (x) ) 0 (from Property 12.1), we havef !!
1 (x)+f !!

2 (x) ) 0.
Therefore f1 + f2 is concave.

Property 12.3. If f(x) is concave, thenf(↵x) is also concave.

Proof 12.3. Indeed, with y = ↵x
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Question: Let us assume thatu
✓2 is linear in ✓2, what are then the conditions on the transfer

function g?

1. log g
✓1 (u) is jointly concave in u and ✓1 (c.f. Þrst term in Eq. (12.1))

2. g
✓1 (u) is jointly convex in u and ✓1 (c.f. second term in Eq. (12.1) )

3. ⇥ is convex

So practically?

¥ g has to be positive (by construction, it is a probability density)

¥ g! is monotonically increasing functions. From condition 2, we have0 ) g!! and from
condition 1, we haveg!! ) (g!

)

2/g. Therefore 0 ) g!! ) (g!
)

2/g.

¥ g grows at least linearly (from cond. 2) and at most exponentially (from cond. 1)

¥ additional subtleties c.f. (Paninski et al. 2004)

Example 1. Typical functions that satisfy those conditions

¥ exponential

¥ rectiÞed linear

Counter-example 1. Typical functions that do not satisfy those conditions

¥ sigmoidal

¥ quadratic
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12.3 Supervised learning

12.3.1 From the neuron perspective

Let us consider a feedforward network withM input neurons and N output neurons. Input
spike trains are denoted asx = (x1, . . . , xM

) and output spike trains asy = (y1, . . . , yN ). Let
us further assume that during training the output neuron is forced to produce spike trainsy
for a correspondingx which are drawn from a teacher distribution p#

(y|x). Practically those
spikes could be forced through some strong input current that comes from other neurons.
The learning task can be formulated as minimizing the KL divergence between the target
distribution p#

(y|x) and the distribution p
✓

(y|x) produced by the network averaged over the
distribution p(x) of input spike trains:

DKL = !DKL(p#
(y|x)+p

✓

(y|x))"
p(x )

=

X

x

p(x)

X

y

p#
(y|x) log

p#
(y|x)

p
✓

(y|x)

(12.6)

where ✓ are the network parameters (such as the connectivity matrix).

One possibility is to perform a gradient descent (even though gradient decent has some patholo-
gies)
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✓
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= ↵ !,
✓
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✓
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(12.7)

where g!
i

(t) = dg(u)/du|
u=ui (t) and g

i

(t) = g(u
i

(t)) and ↵ is the learning rate. Let us now
consider the (online) learning rule for the synaptic weightw

ij

:
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ij
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(t)
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(t) # g
i

(t))(✏
ij

- x
j

)(t) (12.8)

This learning rule is very interesting for several reasons

¥ it is local

¥ it is online

¥ it closely matches experimental on STDP. See Fig. 12.2.

¥ it matches 2 Þelds of research. Statistical learning and synaptic plasticity

Exercise 12.1. Derive the synaptic plasticity learning for neuron model which is given with a
di!erential equation of the type u̇ = f(u, w) wheref is linear in u and in w.

Solution 12.1.
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Biological plausibility

73Bi and Poo, 1998 Brea, Senn, Pfister, J Neurosc., 2013

of spikes in the presynaptic and postsynaptic neurons may be used
in neural networks to decipher information encoded in spike
timing (Hopfield, 1995; Mainen and Sejnowski, 1995; de Ruyter
van Steveninck et al., 1997; Rieke et al., 1997) and to store
information relating to the temporal order of various synaptic
inputs received by a neuron during learning and memory (Ger-
stner and Abbott, 1997; Mehta et al., 1997)

In these cultures we found that only weak synaptic connections
are susceptible to synaptic potentiation by correlated spiking,
with a “cutoff” amplitude of !500 pA. Larger EPSCs may rep-
resent either higher average sizes of evoked synaptic currents at
individual synaptic contacts (boutons) made by the presynaptic
neuron or a larger number of boutons, or both. If higher ampli-
tude represents increased efficacy of individual boutons, then the
existence of the cutoff amplitude for LTP induction may indicate
that the machinery underlying the expression of synaptic poten-
tiation has been saturated. For example, the probability of pre-
synaptic vesicular fusion or the expression of new postsynaptic
glutamate receptors may have reached the maximal level sustain-
able by the cell. Because synaptic inputs that contribute to the
postsynaptic spiking fall into the “potentiation window” associ-
ated with the spikes, spontaneous spiking activity in these cul-
tures may have continuously potentiated these synapses to a
saturated level, resulting in failure in the induction of synaptic
potentiation in older cultures.

The cellular basis that gives rise to the critical window for the
induction of synaptic modifications remains to be determined.
The involvement of NMDA receptors in both potentiation and
depression suggests that elevation of cytosolic Ca 2" is critical in
the induction process, similar to that for synapses in the CA1
region of the hippocampus (Nicoll and Malenka, 1995). Action

potentials initiated during the critical time window after synaptic
activation but before the dissociation of glutamate from the
NMDA channel will lead to the opening of the channel (by
removing the Mg2" block) and a localized surge of cytoplasmic
Ca2" (Connor et al., 1994). This NMDA receptor-mediated
Ca2" influx may also act cooperatively with Ca2" influx through
the voltage-dependent Ca2" channels to induce synaptic poten-
tiation (Eilers et al., 1995; Yuste and Denk, 1995; Magee and
Johnston, 1997). The finding of a reduced extent of synaptic
potentiation in the presence of L-type Ca2" channel blocker is
consistent with the latter findings. Although the off-rate of glu-
tamate from the NMDA receptor is much longer than 20 msec,
the requirement of multiple Ca 2" binding in the activation of
downstream effector molecules (e.g., calmodulin) could poten-
tially sharpen the time window of synaptic modification. Alterna-
tively, the dendritically expressed transient A-type K" channels
that can be inactivated by subthreshold EPSPs may also play a
role by limiting the back-propagation of dendritic action poten-
tials initiated outside the potentiation window (Hoffman et al.,
1997). In the case of negatively correlated spiking, spike-induced
Ca2" elevation attributable to opening of Ca2" channels before
synaptic activation followed by a low-level Ca2" elevation attrib-
utable to subthreshold synaptic activation may be responsible for
the induction of synaptic depression. Indeed, blocking L-type
Ca2" channels abolished the induction of LTD (Fig. 8). Interest-
ingly, binding of glutamate to NMDA receptors is also required
for the induction of LTD, although the membrane potential
remained at a relatively negative level after the spike. Taken
together, our results are consistent with the notion that spatial–
temporal patterns of postsynaptic Ca2" elevation are critical for
the induction of synaptic changes (Lisman, 1989; Malenka et al.,
1992; Neveu and Zucker, 1996). Finally, we noted that there was
a conspicuous absence of short-term potentiation or depression in
the present study. This can be accounted for by our use of
low-frequency stimulation, because short-term potentiation or
depression is known to result from changes in the presynaptic
transmitter supply after high-frequency stimulation (Zucker et
al., 1991).

The dependence of synaptic modifications on postsynaptic cell
type has been observed in the Schaffer collateral (McMahon and
Kauer, 1997) and the mossy fiber pathways (Maccaferri et al.,
1998) in hippocampal slices. In both studies, the standard proto-
col of high-frequency stimulation that normally induces LTP at
synapses onto pyramidal cells either had no effect or resulted in
persistent depression of synapses onto interneurons. Our results
showed that not only the induction of LTP is target-cell specific;
similar target specificity also exists for the induction of LTD. The
target specificity could result from differences in the postsynaptic
molecular machinery underlying synaptic modifications. For ex-
ample, both the ! isoform of calcium/calmodulin-dependent pro-
tein kinase II (CaMK II !) and the Ca2"/calmodulin-dependent
protein phosphatase 2B (calcineurin) appear to be absent in the
postsynaptic densities of glutamatergic inputs onto GABAergic
neurons in the cerebral cortex and hippocampus (Stevens et al.,
1994; Liu and Jones, 1996, 1997; Sı́k et al., 1998). Interestingly, in
parallel fiber synapses in the cerebellum-like electrosensory lobe
of the mormyrid electric fish, where postsynaptic targets are
GABAergic Purkinje-like cells, synaptic modifications can still be
induced. However, the dependence on the temporal order of
correlated presynaptic and postsynaptic spikes is opposite to that
reported here (Bell et al., 1997).

The general notion that correlated presynaptic and postsynap-

Figure 7. Critical window for the induction of synaptic potentiation and
depression. The percentage change in the EPSC amplitude at 20–30 min
after the repetitive correlated spiking (60 pulses at 1 Hz) was plotted
against the spike timing. Spike timing was defined by the time interval (#t)
between the onset of the EPSP and the peak of the postsynaptic action
potential during each cycle of repetitive stimulation, as illustrated by the
traces above. For this analysis, we included only synapses with initial
EPSC amplitude of $500 pA, and all EPSPs were subthreshold for data
associated with negatively correlated spiking. Calibration: 50 mV, 10
msec.
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Figure 12.2: Spike-Timing Dependent Plasticity data from Bi and Poo, 1998 (left) and pre-
dicted by Eq. (12.8) for various spike after-potential kernels⌘.

12.3.2 From the experimenter perspective

Let us know consider the case where a set of neurons are recorded. Those neurons generate
spike trains y in response to stimuliI. At this stage several questions can be asked

¥ the encoding question: given a new stimulus, can I predict the corresponding spike train?

¥ the decoding question: given a recorded spike trains, can I estimate what was the stimulus
that generated them?

Here we will answer only the Þrst question. Mathematically, this problem is analogous to the
supervised learning problem for sSRM neurons that we considered so far, i.e. we replacex by
I. Every neuron has its own receptive Þeld

i

(see Eq. (11.23)) which can be written as a sum
of basis functionsb

j

(t)


i

=

X

j

k
ij

b
j

(t) (12.9)

The task is to minimize

DKL = !DKL(p#
(y|I)+p

✓

(y|I))"
p(I) (12.10)

with respect to all model parameters✓. Those parameters now includew
ij

as well ask
i

j. This
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✓
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+

p

! (y |I)p(I)

(12.11)

We can use this equation to express the learning rule for the weight matrixw. The result is
identical to the one obtained previously by Eq. (12.8). Learning the receptive Þelds coe"cients
k
ij

gives

�k
ij

= ↵
g!
i

(t)

g
i

(t)
(y

i

(t) # g
i

(t))(b
j

- I)(t) (12.12)
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12.4 Reward-based learning with spiking neurons

Learning from reward or punishment is a challenging task for several reasons

1. High dimensionality problem. The sensory inputs to an agent are of high dimen-
sions, so it is hard to know which part of the input is responsible for the reward. A lot of
algorithms assume that the agent is in a given state, but this is already a massive sim-
pliÞcation as the "state identiÞcation" is not a trivial problem. This high-dimensionality
problem is often termed as thespatial-credit assignment problem. Furthermore, it is often
the case that the reward does not come right after the action has been taken, but after a
possibly long and variable delay. Example: In response to a tough lecture (input), a stu-
dent works hard (action) and gets a good mark (reward) few months after. This is called
the temporal-credit assignement problem. Overall this is termed as the spatio-temporal
credit assignment problem. .

2. The reward function can be pretty bad containing several local minima and could be
non-smooth - which makes the problem particularly hard

Let us now make the scenario more concrete. A set of input neurons with activityx stimulate
a recurrent population of neuron with activity y. The environment rewards the network for
certain combinations of x and y, i.e. R(x,y). The task is here to maximize the expected
reward

!R" =

X

x ,y

R(x,y)p
✓

(x,y) (12.13)

Note that here the stochasticity plays a crucial role. It smooths out the possibly non-smooth
reward function R and makes it di!erentiable.
The learning rule can be written as

�✓ = ↵,
✓

!R"

=

X

x ,y

R(x,y),
✓

log p
✓

(x,y)p
✓

(x,y)

= ↵
⌦
(R # ¯R),

✓

log p
✓

(y|x)

↵
(12.14)

Exercise 12.2. Convince yourself that ¯R can be arbitrary

Solution 12.2.

Exercise 12.3. Calculate the optimal ¯R such that the variance of the estimator is minimized.

Solution 12.3.

So, for the synaptic weights, the corresponding online learning rule yields

�w
ij

= ↵(R # ¯R)

g!
i

(t)

g
i

(t)
(y

i

(t) # g
i

(t))(✏
ij

- x
j

)(t) (12.15)

Note again that this learning rule is very similar to the one obtained in Eq. (12.8).

Exercise 12.4. Calculate the reward-based learning rule for a network of rate-based neurons,
i.e. y = wx + ✏ where ✏

j

. N (x; 0, �2
)

Solution 12.4.
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