Chapter 12

Learning with the GLM

12.1 Introduction on learning concepts
See learning concepts in Ch 13 of (Barber 2012):

¥ supervised learningp(y|x; 6)

¥ reward-based learning! R"

¥ unsupervised learningp(y|6)

Other forms exists such as active learning or semi-supervised learning. In this section, we will
see that the learning rule in the dilerent scenarios are very similar and do have some biological
support.

12.2 Note on log-concavity of the PDF
Let L be the log-likelihood debned as the logarithm of the probability density function given
in Eq. (11.9), i.e.
T
L(9) = logp(y") = /O log (g, (ug, (t))) y(t) # go, (ug, (t))dt (12.1)

wheref = (61,02) $ © are the parameters of the model. How to guarantee thaf.(6) does not
have local maxima? A su"cient condition is that L is concave (see Fig. 12.1)

¥
20¢
15+
10+
50

/A B B R
I'5 X1 X

Figure 12.1: For a concave functionf(z) % (1# «) f(z1) + af (z2) wherez = (1# «)x1 + azs.

oo)

=
)

77

CHAPTER 12. LEARNING WITH THE GLM

Definition 12.1. C'is a convex set if(1# o)z +ay $ C &,y $ C and & $ [0, 1].
Definition 12.2. A function f:C" R (R is concave on the (convex) sef' if

F(1# a)zy +axs) Y (1# o) f(z1) + af(z2) &1,228 C a$ [0,1] (12.2)
f is strictly convex if
F(1# o)z +axe) > (1# o) f(x1) + af(x2) &1,22$ C a$ [0,1] (12.3)

Property 12.1. A twice dilerentiable function f is concave i! f*(z)) 0, & $ C.

Proof 12.1. LetOs prove f(z) concave* f"(z) < 0". Let a = 0.5, 21 = =z # Az and
xo = x + Az. From concavity, we have

F(1# a)xy + axe) = f(x) % %f(x + Az) + %f(a: # Ax) (12.4)
Hence)
fix) = Jim 5 (f(z+ Ax)# 2f(2) + f(a # Az))) 0 (12.5)

Property 12.2. Concavity is preserved under addition, i.e. f1, fo are concave, thenf; + fo
is concave.

Proof 12.2. Since fi'(z)) 0and f¥(x)) 0 (from Property 12.1), we havef; (z)+ f5(z)) 0.
Therefore f1 + f, is concave.

Property 12.3. If f(x) is concave, thenf(ax) is also concave.
Proof 12.3. Indeed, withy = ax

ef d<dfdy>_d<df>dy+df612y

dz? — dx \dydx) dz \dy) dz ' dydaz?
_ Ef (dy) iy
dy? \ dx dy dx?
——
=a2>0 =0

Question: Let us assume thatug, is linear in 63, what are then the conditions on the transfer
function ¢?

1. log ge, (u) is jointly concave in u and 6; (c.f. brst term in Eq. (12.1))
2. gp, (u) is jointly convex in » and #; (c.f. second term in Eq. (12.1))
3. © is convex
So practically?
¥ g has to be positive (by construction, it is a probability density)
¥ ¢' is monotonically increasing functions. From condition 2, we haved) ¢" and from
condition 1, we haveg") (¢')%/g. Therefore0) ¢") (¢')%/g.
¥ g grows at least linearly (from cond. 2) and at most exponentially (from cond. 1)
¥ additional subtleties c.f. (Paninski et al. 2004)

Example 1. Typical functions that satisfy those conditions
¥ exponential

¥ rectibed linear
Counter-example 1. Typical functions that do not satisfy those conditions
¥ sigmoidal

¥ quadratic

Neurophysics 2016 78 Jean-Pascal Pbster

CHAPTER 12. LEARNING WITH THE GLM

12.3 Supervised learning

12.3.1 From the neuron perspective

Let us consider a feedforward network withA/ input neurons and N output neurons. Input
spike trains are denoted ax = (z1,...,x)7) and output spike trains asy = (y1,...,yn). Let
us further assume that during training the output neuron is forced to produce spike trainsy
for a correspondingx which are drawn from a teacher distribution p*(y|x). Practically those
spikes could be forced through some strong input current that comes from other neurons.
The learning task can be formulated as minimizing the KL divergence between the target
distribution p*(y|x) and the distribution py(y|x) produced by the network averaged over the
distribution p(x) of input spike trains:

Dxr = !DKL(p#(Y|X)+p9(YIX))"p(X)

_ x #(vIx) 1o p#(Y|X)
= szp()Zy:p (ylx)1 8 aly 1) (12.6)

where are the network parameters (such as the connectivity matrix).

One possibility is to perform a gradient descent (even though gradient decent has some patholo-
gies)

A0 = #Ha, GEKL
= al, glogpe(¥1X)"y (y)

N 1o
o <Z |29 e # g0, 9ui<t>dt> (12.7)
i=1 t

P (YIx)p(x)

where g(t) = dg(u)/du,—,) and g;(t) = g(ui(t)) and « is the learning rate. Let us now
consider the (online) learning rule for the synaptic weightw;;:
g;(t)
Awij = gf(n (yi(t) # gi(t))(eij - 25)(t) (12.8)

This learning rule is very interesting for several reasons

¥ it is local
¥ it is online
¥ it closely matches experimental on STDP. See Fig. 12.2.

¥ it matches 2 pelds of research. Statistical learning and synaptic plasticity

Exercise 12.1. Derive the synaptic plasticity learning for neuron model which is given with a
dilerential equation of the type @ = f(u,w) where f is linear in « and in w.

Solution 12.1.

Neurophysics 2016 79 Jean-Pascal Pbster

CHAPTER 12. LEARNING WITH THE GLM

Data

100
801 G
60

S 40

20

b 6% o® o 000

o
joten
\

-20

00

-40

-60 T T T T
-80 -40 0 40 80

tpost - tpre [ms} tpost - tpre [ms]

Figure 12.2: Spike-Timing Dependent Plasticity data from Bi and Poo, 1998 (left) and pre-
dicted by Eq. (12.8) for various spike after-potential kernelsn.

12.3.2 From the experimenter perspective

Let us know consider the case where a set of neurons are recorded. Those neurons generate
spike trains y in response to stimuli/. At this stage several questions can be asked

¥ the encoding question: given a new stimulus, can | predict the corresponding spike train?

¥ the decoding question: given a recorded spike trains, can | estimate what was the stimulus
that generated them?

Here we will answer only the brst question. Mathematically, this problem is analogous to the
supervised learning problem for sSSRM neurons that we considered so far, i.e. we replacby
1. Every neuron has its own receptive beld; (see Eq. (11.23)) which can be written as a sum
of basis functionsb;(t)

ki =Y kijb;(t) (12.9)
J
The task is to minimize

Dy, = ' Dxr (0 (y1D)+pe(y11))" 1) (12.10)

with respect to all model parametersf. Those parameters now includew;; as well ask;j. This
gives

N 7o
A9=a<2 /0 90 (1) # gi(1)), eui<t>dt> (12.11)
=1

i(t
9i(t) P (y1Dp(1)

We can use this equation to express the learning rule for the weight matrixv. The result is
identical to the one obtained previously by Eq. (12.8). Learning the receptive belds coe"cients
k;; gives

Ak = a8 50) # 0,60 10 (1212)

Neurophysics 2016 80 Jean-Pascal Pbster

CHAPTER 12. LEARNING WITH THE GLM

12.4 Reward-based learning with spiking neurons
Learning from reward or punishment is a challenging task for several reasons

1. High dimensionality problem. The sensory inputs to an agent are of high dimen-
sions, so it is hard to know which part of the input is responsible for the reward. A lot of
algorithms assume that the agent is in a given state, but this is already a massive sim-
plipcation as the "state identibcation” is not a trivial problem. This high-dimensionality
problem is often termed as thespatial-credit assignment problem Furthermore, it is often
the case that the reward does not come right after the action has been taken, but after a
possibly long and variable delay. Example: In response to a tough lecture (input), a stu-
dent works hard (action) and gets a good mark (reward) few months after. This is called
the temporal-credit assignement problem Overall this is termed asthe spatio-temporal
credit assignment problem .

2. The reward function can be pretty bad containing several local minima and could be
non-smooth - which makes the problem particularly hard

Let us now make the scenario more concrete. A set of input neurons with activitx stimulate
a recurrent population of neuron with activity y. The environment rewards the network for
certain combinations of x and y, i.e. R(x,y). The task is here to maximize the expected
reward

\R" =) R(x,y)ps(x,y) (12.13)
X,y

Note that here the stochasticity plays a crucial role. It smooths out the possibly hon-smooth
reward function R and makes it dilerentiable.
The learning rule can be written as

Al = «a, g!R"

= Y R(x,y), glogps(x,¥)pe(x,y)
X?y

= a<(R# R), glogpg(y|x)> (12.14)
Exercise 12.2. Convince yourself thatR can be arbitrary
Solution 12.2.
Exercise 12.3. Calculate the optimal R such that the variance of the estimator is minimized.
Solution 12.3.

So, for the synaptic weights, the corresponding online learning rule yields

_ = i) e
Awij = a(R# R)) (yi(t) # 9i(t))(€ij - x5)(t) (12.15)

Note again that this learning rule is very similar to the one obtained in Eq. (12.8).

Exercise 12.4. Calculate the reward-based learning rule for a network of rate-based neurons,
i.e. y=wx+e wheree; . N (z;0,0?%)

Solution 12.4.

Neurophysics 2016 81 Jean-Pascal Pbster

