Inference and learning at the level of single synapses and spiking neurons

PART II

Jean-Pascal Pfister

University of Zurich^{UZH}

Outlook of part II

I. Learning with the GLM (Brea at al. J. Neurosc. 2013)

2. Decoding at single synapses (Pfister et al. Nat. Neurosc. 2010)

3. Decoding with the GLM (with A. Kutschireiter)

Matching Recall and Storage in Sequence Learning with Spiking Neural Networks. Brea, Senn and Pfister J. Neurosc. 2013

- Motivation for modelling sequence learning
- Definition of the problem
- Network model
- Learning rule (with only visible units)
- Learning rule (with additional hidden units)

Neural sequences in songbird

Neural sequences in songbird

Outline

Motivation for modelling sequence learning

- Definition of the problem
- Network model
- Learning rule (with only visible units)
- Learning rule (with additional hidden units)
- Discussion

Problem description

Learn a distribution of temporal sequences with a recurrent network of spiking neurons with hidden units.

Problem description

Learn a distribution of temporal sequences with a recurrent network of spiking neurons with hidden units.

Minimize:
$$D_{KL}(P^*(v) || P_w(v)) = \left\langle \log \left(\frac{P^*(v)}{P_w(v)} \right) \right\rangle_{P^*(v)}$$

Network model

Network spiking activity: x = (v, h)Membrane potential of neuron i: $u_i(t) = \sum_{j \neq i} w_{ij} x_j^{\epsilon}(t) + x_i^{\eta}(t)$

Probability density that neuron i fires at t : $\rho_i(t) = g(u_i(t))$

Outline

- Motivation for modeling sequence learning
- Definition of the problem
- Network model

- Learning rule (with only visible units)
- Learning rule (with additional hidden units)
- Discussion

Deriving the learning rule (only visible units)

Model pdf of visible pattern v

$$P_w(v) = \exp\left(\sum_{i=1}^N \int_0^T v_i(t) \log \rho_i(t) - \rho_i(t) dt\right)$$

Gradient learning rule:

$$\Delta w = -\nabla_w D_{KL}(P^*(v)||P_w(v))$$
$$= \langle \nabla_w \log P_w(v) \rangle_{P^*(v)}$$

Online learning rule:

$$\dot{w}_{ij} = \frac{\rho_i'}{\rho_i} (v_i - \rho_i) v_j^{\epsilon}$$

Biological plausibility (1): link to STDP

Biological plausibility (2): link to triplet rule

Biological plausibility (3)

Roscoff 26.6.2017

Pfister and Dziennik, in prep. 14

Realistic EPSP

Outline

- Motivation for modelling sequence learning
- Definition of the problem
- Network model
- Learning rule (with only visible units)
- Learning rule (with additional hidden units)
 Discussion

Deriving the learning rule

Two tricks to solve the problem

$$\log P(v) = \log \langle R(v|h) \rangle_{Q(h|v)} \ge \langle \log R(v|h) \rangle_{Q(h|v)}$$

Biological relevance

Related to astrocytes ? Neuromodulators ?

- Modulates synaptic plasticity (Henneberger et al. 2010)
- → Can shift LTD to LTP (Panatier et al. 2006)
- ➡ acts at a slow time constant

Difficult deterministic patterns can be learned

)|3 21

Learnable stochastic patterns

Conclusion I

- Derived learning rules from first principles
 - → that are causal, local (+ global term)
 - → link with STDP, triplet rule
 - ➡ simple learning rule for the hidden weights
 - can learn difficult (non-Markovian) sequences of spikes
- learning time is still an issue

Outlook of part II

I. Learning with the GLM (Brea at al. J. Neurosc. 2013)

2. Decoding at single synapses (Pfister et al. Nat. Neurosc. 2010)

3. Decoding with the GLM (with A. Kutschireiter)

Short-Term Synaptic Plasticity

Analog and digital signaling

Does he love me?

Mister random mood

Miss detector

Neuronal model

Neuronal model

Ornstein Uhlenbeck $\dot{u} = -\tau^{-1}(u - u_0) + \sigma\xi(t)$ process: prob. spike: $p(s_t = 1 | u_t) = g(u_t)\Delta t$

Inference of the membrane potential

Posterior distribution:

Optimal estimator

Posterior mean

depolarization

$$\dot{v} = -\tau^{-1}(v - v_0) + JxS(t)$$
 $\dot{\hat{u}} = -\tau^{-1}(\hat{u} - u_0) + \beta x(S(t) - \gamma(t))$

resource variable

Tsodyks and Markram,

1997

Postsynaptic

Posterior variance

$$\dot{x} = -\tau_D^{-1}(x-1) - YxS(t) \quad \dot{x} = -2\tau^{-1}(x-1) - \gamma(t)\beta^2 x^2$$

Pfister, Dayan and Lengyel: NIPS 2009, Nature Neuroscience 2010 31

Steady-state spiking increment

Include adaptation effects

Optimal estimator

Postsynaptic depolarization

$$\dot{v} = -\frac{v - v_0}{\tau} + JxyS(t)$$

resource variable

$$\dot{x} = -\frac{x-1}{\tau_{\rm D}} - yxS(t)$$

utilization variable

$$\dot{y} = -\frac{y - Y}{\tau_{\rm F}} + Y_0(1 - y)S(t)$$

Tsodyks and Markram, 1997

Posterior mean

$$\dot{\hat{u}} = -\frac{\hat{u} - u_0}{\tau} + \beta x(S(t) - \gamma(t))$$

Posterior variance

$$\dot{x} = -\frac{x-1}{\tau/2} - \gamma(t)\beta^2 x^2$$

effective "threshold"

$$\dot{\theta} = -\frac{\theta}{\tau_{\rm R}} + \theta_0 S(t)$$

Paired-pulse ratio

Parameter analysis

Conclusion II

- Short-term synaptic dynamics is not an undesirable variability but can be useful for computation.
- Synapses with short-term plasticity closely match the behavior of the optimal estimator of the presynaptic membrane potential.
- Predictions of the model
 - STP properties have to be matched to the presynaptic neuron statistics
 - link between facilitation and adaptation

Outlook of part II

I. Learning with the GLM (Brea at al. 2013)

2. Decoding at single synapses (Pfister et al. 2010)

3. Decoding with the GLM

Decoding problem

Generative model

hidden dynamics $d\mathbf{x} = \mathbf{f}(\mathbf{x})dt + \Sigma^{1/2}d\omega$ observation process $\mathbf{y} = \frac{d\mathbf{N}}{dt}$ $d\mathbf{N} \sim \text{Poisson}(\mathbf{g}(\mathbf{u})dt)$

with membrane potential

 $\mathbf{u} = W\mathbf{y}^{\epsilon} + V\mathbf{x}$

Hidden state x_t 2 -4 0 200 400 600 800 1000 Time (ms) Neuron Numbe 200 600 800 1000 400 Time (ms)

task: infer x from spiking observations y $\longrightarrow p(\mathbf{x}(t)|\mathbf{y}(0...t))$

Solution

sampling-based representation

$$p(\mathbf{x}_t | \mathbf{y}_{0...t}) = \frac{1}{N} \sum_{k=1}^N \delta(\mathbf{x}_t - \mathbf{x}_t^{(k)})$$

spiking neural particle filter

$$d\mathbf{x}^{(k)} = \mathbf{f}(\mathbf{x}^{(k)})dt + \Sigma^{1/2}d\omega + \frac{\operatorname{cov}(\rho(\mathbf{x}), \mathbf{x})}{\langle \rho(\mathbf{x}) \rangle}(d\mathbf{N} - \rho(\mathbf{x}^{(k)})dt)$$

with $\rho(\mathbf{x}) = \mathbf{g}(\mathbf{u}(\mathbf{x}))$

spiking neural particle filter (sNPF)

$$dp = \mathcal{L}^{\dagger}[p]dt + \left(\frac{g}{\langle g \rangle} - 1\right) (dN - \langle g \rangle dt)p$$

$$d\langle x\rangle = \langle f(x)\rangle dt + \left(\frac{\langle gx\rangle}{\langle g\rangle} - \langle x\rangle\right) (dN - \langle g\rangle dt)$$

$$dx^{(k)} = f(x^{(k)})dt + \Sigma^{1/2}d\omega + \frac{\operatorname{cov}(g, x)}{\langle g \rangle}(dN - \langle g \rangle dt)$$

Estimated position

Performance

$$g(u) = g_0 \exp(\beta u)$$

NPF alleviates the curse of dimensionality

[Note that here simulations are made with a diffusion observation instead of a point emission observation]

Roscoff 26.6.2017

Kutschireiter et al. 2017

Conclusion III

- Dynamic stimuli can be inferred from spiking recordings
- The performance of the spiking neural particle filter is comparable to standard particle filters
- In higher dimensions unweighted particle filters have the potential to alleviate the curse of dimensionality

Summary

Learning with the GLM (Brea at al. J. Neurosc. 2013)

Decoding at single synapses (Pfister et al. Nat. Neurosc. 2010)

Decoding with the GLM (with A. Kutschireiter)

