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Neural sequences in songbird
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Here, we avoid the question of how RA activity is translated into
sound, and simply ask how pre-motor burst patterns in RA are
generated. Previous studies have suggested that the syllable order
and tempo of the motif are generated by a network that resides
above RA, and includes HVC12,16, and that an HVC neural code for
syllables is transformed into a code for shorter acoustic elements
through the projection of HVC onto RA1,17. To re-examine these
issues, we have characterized the role of inputs to RA from pre-
motor nucleus HVC.
HVC contains at least three classes of neurons: neurons that

project to the RA, neurons that project to area X, and inter-
neurons18,19. We have identified HVC neuron classes by antidromic
activation20 from RA and from area X (Fig. 1b, c). Chronic single-
neuron recordings were made from identified neurons of all three
classes. Antidromically identified RA-projecting HVC neurons
(HVC(RA)) (n ¼ 16, three birds) were completely inactive in
awake, non-singing birds (,0.001 spikes s21), and burst extremely
sparsely during vocalizations, generating at most a single burst per
song motif (Fig. 2a). HVC(RA) bursts had a duration of 6.1 ^ 2ms,
and comprised 4.5 ^ 2 spikes at a firing rate of 613 ^ 210 s21

(ranges are^1 s.d. unless specified otherwise). HVC(RA) bursts were
highly stereotyped, tightly time-locked to the song motif
(0.66 ^ 0.14ms r.m.s. jitter), and occurred reliably on every rendi-
tion of the motif (Fig. 2b). Thus, on a millisecond timescale,
HVC(RA) bursts were maximally correlated to the vocalization.
Different HVC(RA) neurons tended to burst at different times in
the song, with no obvious timing relation to the onset or offset of
song syllables. Three identified HVC(RA) neurons generated no
bursts during the song, but produced a single burst during call
vocalizations. HVC neurons projecting to area X also burst sparsely
during singing (0–5 bursts per motif, n ¼ 30; data not shown). In
contrast to projection neurons, putative HVC interneurons
(n ¼ 31), most of which were spontaneously active in the non-
singing bird (11 ^ 7 spikes s21), produced high rates of spiking and

bursting activity throughout song and call vocalizations (Fig. 2b).
The firing patterns of putative HVC interneurons were similar to
those of unidentified neurons found in previous studies of HVC in
the singing bird1.

Previous observations have shown that sleep-related spike and
burst patterns in nucleus RA can closely recapitulate those gener-
ated during singing2, suggesting that a common neural mechanism
may underlie the generation of song- and sleep-related RA burst
patterns. A more detailed understanding of the role of HVC in
generating sleep-related activity in RA may provide a hint as to the
interaction of these two nuclei during singing. We next examined
the firing patterns of RA neurons and identified HVC neurons using
a new, sleeping-bird preparation where the head of the bird is fixed,
permitting simultaneous single-unit recordings in multiple brain
areas and pharmacological manipulation, which are not currently
possible in the singing bird.

Similar to the situation in the singing bird, HVC(RA) neurons
burst sparsely during sleep (0.06 ^ 0.05 bursts s21, n ¼ 116, 27
birds). Paired recordings in RA and HVC (Fig. 3a) neurons showed
that HVC(RA) neurons fired 13 ^ 3 times fewer bursts in the
sleeping bird than did RA neurons (n ¼ 53 pairs). The bursts had
properties similar to those observed during singing: duration of
bursts during sleep in RA and HVC(RA) neurons were 11.5 ^ 3.5ms
and 6.5 ^ 1.8ms, respectively. Bursts of HVC(RA) neurons during
sleep comprised 3.2 ^ 0.8 spikes per burst, and had an average
firing rate of 347 ^ 81 s21. The relationship between HVC(RA)

bursts and RA bursts is readily seen in raster plots of RA spike
trains aligned in time to the onset of bursts in HVC(RA) neurons
(Fig. 3b, c). RA neurons reliably showed a pattern of bursts locked to
the HVC(RA) bursts (n ¼ 45 of 53 pairs). Furthermore, multiple RA
neurons recorded sequentially with a single HVC(RA) neuron
(n ¼ 3) show that different RA neurons generate different patterns
of bursts, as is the case during singing. The relation between
HVC(RA) and RA spike trains was quantified using a correlation

Figure 2 Spiking activity of identified HVC neurons during singing. a, Extracellular record
of an RA-projecting HVC (HVC(RA)) neuron (bottom), with the simultaneously recorded

vocalization (top). The HVC(RA) neuron generates a single burst during each of three motif

renditions. b, Spike raster plot of ten HVC(RA) neurons and two HVC interneurons recorded
in one bird during singing (left) and call vocalizations (right). Each row of tick marks shows

spikes generated during one rendition of the song or call; roughly ten renditions are shown

for each neuron. Neural activity is aligned by the acoustic onset of the nearest syllable.

HVC(RA) neurons burst reliably at a single precise time in the song or call; however, HVC

interneurons spike or burst densely throughout the vocalizations.
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Sequences of motor activity are encoded in many vertebrate
brains by complex spatio-temporal patterns of neural activity;
however, the neural circuit mechanisms underlying the gener-
ation of these pre-motor patterns are poorly understood. In
songbirds, one prominent site of pre-motor activity is the fore-
brain robust nucleus of the archistriatum (RA), which generates
stereotyped sequences of spike bursts during song1 and recapi-
tulates these sequences during sleep2. We show that the stereo-
typed sequences in RA are driven from nucleus HVC (high vocal
centre), the principal pre-motor input to RA3,4. Recordings of
identified HVC neurons in sleeping and singing birds show that
individual HVC neurons projecting onto RA neurons produce
bursts sparsely, at a single, precise time during the RA sequence.
These HVC neurons burst sequentially with respect to one
another. We suggest that at each time in the RA sequence, the
ensemble of active RA neurons is driven by a subpopulation of
RA-projecting HVC neurons that is active only at that time. As a
population, these HVC neurons may form an explicit represen-
tation of time in the sequence. Such a sparse representation, a
temporal analogue of the ‘grandmother cell’5 concept for object
recognition, eliminates the problem of temporal interference
during sequence generation and learning attributed to more
distributed representations6,7.

Songbirds produce highly stereotyped, learned vocalizations8,9.
Zebra finch (Taeniopygia guttata) song consists of a complex pattern
of sounds with spectral and temporal modulation over a wide range
of timescales10. A basic acoustic element is the song syllable, which
may itself be composed of a complex sequence of sounds varying on
a 10-ms timescale, or even less11. Several distinct song syllables are
organized into a single, repeated pattern of about 1 s in duration,

called a song motif. Two pre-motor nuclei have been identified for
their importance in song generation: nucleus RA and nucleus
HVC12. Premotor HVC neurons project onto RA neurons, which
in turn project with amyotopic mapping ontomotor neurons of the
vocal organ13, and to respiratory brain areas14. During singing, RA
neurons generate a highly stereotyped, complex sequence of action
potential bursts, each precisely correlated to the song vocalization
on a submillisecond timescale1,15. The average burst duration is
roughly 10ms, and each RA neuron generates a unique pattern of
roughly ten bursts per song motif, such that on average 12% of
RA neurons are active at any time (A. Leonardo, and M.S.F.,
unpublished data) (Fig. 1a).

Figure 1 RA sequences and identification of HVC neurons. a, Neurons in nucleus RA
generate complex sequences of brief action potential bursts during song vocalizations.

Spectrogram (top) and acoustic signal of the song motif, and plots of instantaneous firing

rate (bottom) of song-related spike activity in three different RA neurons recorded in one

zebra finch. Neural activity is aligned using the onset of the second syllable of each motif

(arrowhead). Two renditions are displayed for each neuron. b, Single-unit recordings were
made in pre-motor nuclei HVC and RA. HVC neurons were antidromically identified by

electrical stimulation in RA and area X. RA projects to vocal motor neurons in the nucleus

of the twelfth nerve (nXIIts). c, RA-projecting neurons and putative interneurons could be
activated from RA but not from area X. Stimulation in RA, triggered by spontaneous spikes,

resulted in spike collision for RA-projecting neurons but not for interneurons.
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ẇij =
⇢0

i

⇢i
(vi � ⇢i)v✏

j



Roscoff 26.6.2017

Biological plausibility (1): link to STDP
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Dirac spike train EPSPExpect. firing rate

of spikes in the presynaptic and postsynaptic neurons may be used
in neural networks to decipher information encoded in spike
timing (Hopfield, 1995; Mainen and Sejnowski, 1995; de Ruyter
van Steveninck et al., 1997; Rieke et al., 1997) and to store
information relating to the temporal order of various synaptic
inputs received by a neuron during learning and memory (Ger-
stner and Abbott, 1997; Mehta et al., 1997)

In these cultures we found that only weak synaptic connections
are susceptible to synaptic potentiation by correlated spiking,
with a “cutoff” amplitude of !500 pA. Larger EPSCs may rep-
resent either higher average sizes of evoked synaptic currents at
individual synaptic contacts (boutons) made by the presynaptic
neuron or a larger number of boutons, or both. If higher ampli-
tude represents increased efficacy of individual boutons, then the
existence of the cutoff amplitude for LTP induction may indicate
that the machinery underlying the expression of synaptic poten-
tiation has been saturated. For example, the probability of pre-
synaptic vesicular fusion or the expression of new postsynaptic
glutamate receptors may have reached the maximal level sustain-
able by the cell. Because synaptic inputs that contribute to the
postsynaptic spiking fall into the “potentiation window” associ-
ated with the spikes, spontaneous spiking activity in these cul-
tures may have continuously potentiated these synapses to a
saturated level, resulting in failure in the induction of synaptic
potentiation in older cultures.

The cellular basis that gives rise to the critical window for the
induction of synaptic modifications remains to be determined.
The involvement of NMDA receptors in both potentiation and
depression suggests that elevation of cytosolic Ca 2" is critical in
the induction process, similar to that for synapses in the CA1
region of the hippocampus (Nicoll and Malenka, 1995). Action

potentials initiated during the critical time window after synaptic
activation but before the dissociation of glutamate from the
NMDA channel will lead to the opening of the channel (by
removing the Mg2" block) and a localized surge of cytoplasmic
Ca2" (Connor et al., 1994). This NMDA receptor-mediated
Ca2" influx may also act cooperatively with Ca2" influx through
the voltage-dependent Ca2" channels to induce synaptic poten-
tiation (Eilers et al., 1995; Yuste and Denk, 1995; Magee and
Johnston, 1997). The finding of a reduced extent of synaptic
potentiation in the presence of L-type Ca2" channel blocker is
consistent with the latter findings. Although the off-rate of glu-
tamate from the NMDA receptor is much longer than 20 msec,
the requirement of multiple Ca 2" binding in the activation of
downstream effector molecules (e.g., calmodulin) could poten-
tially sharpen the time window of synaptic modification. Alterna-
tively, the dendritically expressed transient A-type K" channels
that can be inactivated by subthreshold EPSPs may also play a
role by limiting the back-propagation of dendritic action poten-
tials initiated outside the potentiation window (Hoffman et al.,
1997). In the case of negatively correlated spiking, spike-induced
Ca2" elevation attributable to opening of Ca2" channels before
synaptic activation followed by a low-level Ca2" elevation attrib-
utable to subthreshold synaptic activation may be responsible for
the induction of synaptic depression. Indeed, blocking L-type
Ca2" channels abolished the induction of LTD (Fig. 8). Interest-
ingly, binding of glutamate to NMDA receptors is also required
for the induction of LTD, although the membrane potential
remained at a relatively negative level after the spike. Taken
together, our results are consistent with the notion that spatial–
temporal patterns of postsynaptic Ca2" elevation are critical for
the induction of synaptic changes (Lisman, 1989; Malenka et al.,
1992; Neveu and Zucker, 1996). Finally, we noted that there was
a conspicuous absence of short-term potentiation or depression in
the present study. This can be accounted for by our use of
low-frequency stimulation, because short-term potentiation or
depression is known to result from changes in the presynaptic
transmitter supply after high-frequency stimulation (Zucker et
al., 1991).

The dependence of synaptic modifications on postsynaptic cell
type has been observed in the Schaffer collateral (McMahon and
Kauer, 1997) and the mossy fiber pathways (Maccaferri et al.,
1998) in hippocampal slices. In both studies, the standard proto-
col of high-frequency stimulation that normally induces LTP at
synapses onto pyramidal cells either had no effect or resulted in
persistent depression of synapses onto interneurons. Our results
showed that not only the induction of LTP is target-cell specific;
similar target specificity also exists for the induction of LTD. The
target specificity could result from differences in the postsynaptic
molecular machinery underlying synaptic modifications. For ex-
ample, both the ! isoform of calcium/calmodulin-dependent pro-
tein kinase II (CaMK II !) and the Ca2"/calmodulin-dependent
protein phosphatase 2B (calcineurin) appear to be absent in the
postsynaptic densities of glutamatergic inputs onto GABAergic
neurons in the cerebral cortex and hippocampus (Stevens et al.,
1994; Liu and Jones, 1996, 1997; Sı́k et al., 1998). Interestingly, in
parallel fiber synapses in the cerebellum-like electrosensory lobe
of the mormyrid electric fish, where postsynaptic targets are
GABAergic Purkinje-like cells, synaptic modifications can still be
induced. However, the dependence on the temporal order of
correlated presynaptic and postsynaptic spikes is opposite to that
reported here (Bell et al., 1997).

The general notion that correlated presynaptic and postsynap-

Figure 7. Critical window for the induction of synaptic potentiation and
depression. The percentage change in the EPSC amplitude at 20–30 min
after the repetitive correlated spiking (60 pulses at 1 Hz) was plotted
against the spike timing. Spike timing was defined by the time interval (#t)
between the onset of the EPSP and the peak of the postsynaptic action
potential during each cycle of repetitive stimulation, as illustrated by the
traces above. For this analysis, we included only synapses with initial
EPSC amplitude of $500 pA, and all EPSPs were subthreshold for data
associated with negatively correlated spiking. Calibration: 50 mV, 10
msec.

10470 J. Neurosci., December 15, 1998, 18(24):10464–10472 Bi and Poo • Spike Timing for LTP and LTD in Culture

Bi and Poo, 1998
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Biological plausibility (3)
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Deterministic pattern: capacity

15Brea, Senn, Pfister, J Neurosc., 2013
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Realistic EPSP
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Outline

• Motivation for modelling sequence learning

• Definition of the problem

• Network model

• Learning rule (with only visible units)

• Learning rule (with additional hidden units)

• Discussion

17
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Deriving the learning rule
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�w = �rwDKL(P ⇤(v)||Pw(v))

= hrw log Pw(v)iP⇤(v)

= hrw log Pw(v, h)iPw(h|v)P⇤(v)

=

*
1

Pw(v)

X

h

rwPw(v, h)

+

P⇤(v)

Hard to  
sample from

=

*
rw log

X

h

Pw(v, h)

+

P⇤(v)
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Two tricks to solve the problem

19

1. Joint distribution can be factorized

2. Maximize a lower bound of the log-likelihood

P (v, h) =
Y

t

p(vt|vt�1, ht�1)

| {z }
R(v|h)

Y

t

p(ht|vt�1, ht�1)

| {z }
Q(h|v)

ht�1 ht

vtvt�1

log P (v) = log hR(v|h)iQ(h|v) � hlog R(v|h)iQ(h|v)

easy to calculate easy to sample from



Roscoff 26.6.2017

Biological relevance

20

Dirac spike train EPSPExpect. firing rate

�wij = (r � r̄)
⇢

0
i

⇢i
(xi � ⇢i)x✏

j i : hidden

internal reward (global)

Related to astrocytes ? Neuromodulators ?
➡ Modulates synaptic plasticity (Henneberger et al. 2010)
➡ Can shift LTD to LTP (Panatier et al. 2006)
➡ acts at a slow time constant

r =
Z T

0

NvX

i=1

�ui(t)xi(t)� ⇢i(t)dt
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Difficult deterministic patterns can be learned

21

visible + hidden

Brea, Senn, Pfister, J Neurosc., 2013
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Learnable stochastic patterns
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P ⇤(v) =
Y

t

P (vt|vt�1, vt�2, vt�3)

Brea, Senn, Pfister, J Neurosc., 2013
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Conclusion I

• Derived learning rules from first principles

➡ that are causal, local (+ global term)

➡ link with STDP,  triplet rule

➡ simple learning rule for the hidden weights

➡ can learn difficult (non-Markovian) sequences of 
spikes

• learning time is still an issue 

23
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Outlook of part II

1. Learning with the GLM  
(Brea at al.  J. Neurosc. 2013)

24

2. Decoding at single synapses  
(Pfister et al. Nat. Neurosc. 2010)

3. Decoding with the GLM  
(with A. Kutschireiter)
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Short-Term Synaptic Plasticity

25

Tsodyks and Markram 1997

fraction of resources in the effective state, E. Trial-by-trial
f luctuations in synaptic responses, including failures, are ne-
glected in the model because synaptic inputs from large
populations of neurons are expected to average out these
fluctuations. USE (as well as ⌅rec and ⌅inact) is a kinetic param-
eter of the model that determines the dynamic behavior of
synaptic transmission, in particular the rate of depression. The
higher the USE, the faster synaptic resources are utilized, which
effectively leads to more rapid depression.

These equations allow iterative expressions for successive
excitatory postsynaptic currents (EPSCs) produced by a train
of presynaptic APs:

EPSCn⌥1 ⇤ EPSCn�1 ⇥ USE⇤e⌅⇧t�⌅rec

� ASE�USE�1 ⇥ e⌅⇧t�⌅rec⇤, [2]

where ⇧t is the time interval between nth and (n ⌥ 1)th AP,
and ASE is the maximal EPSC evoked when all the resources
are shifted into the effective state. In deriving Eq. 2, ⇧t was
assumed to be much larger than the inactivation time constant,
hence the dependence on ⌅inact dropped out of this equation.

RESULTS
Simulating Dynamic Synaptic Transmission. To use the

model to simulate dynamic synaptic transmission a number of
parameters have to be determined experimentally. The
postsynaptic responses to a standard stimulation protocol were
used to derive the paramters ASE, USE, and ⌅rec for a given
synapse (Fig. 1A). The model could then reproduce the
experimental traces for both regular and irregular trains of
presynaptic APs (Fig. 1 B and C).

Rate Coding. The model made several predictions, both
about the properties of synaptic transmission and how these
properties influence the way in which the signal transmitted
between pyramidal neurons could be coded. The first predic-
tion was that if the synapses are driven beyond a certain
frequency, defined as the limiting frequency, then the station-
ary amplitude of individual EPSPs reached during a regular
spike train would begin to decrease in inverse proportion to the
frequency (1�f ):

EPSCst ⇥
E

f⌅rec
. [3]

To test the accuracy of this prediction we recorded the synaptic
responses at different frequencies and found the prediction to
be true in all of 11 cases (Fig. 2 A and B). The limiting
frequencies were between 10 and 25 Hz. The 1�f law of these
synapses indicates that above the limiting frequency the aver-
age postsynaptic depolarization from resting membrane po-
tential saturates as presynaptic firing rates increase (Fig. 2C).
The limiting frequency therefore sets the frequency range
within which these synapses are able to transmit information
about the presynaptic firing rate.

The second prediction was that factors that determine the
rate of synaptic depression also determine the limiting fre-
quency:

flim ⇥ 1��⌅recUSE⇤. [4]

In the model, the higher USE is, the faster synaptic responses
depress to a stationary level for a given frequency of stimu-
lation and the lower the limiting frequency is.

Depending on the biophysical mechanism of depression, the
USE parameter can be in part or completely determined by the
probability that an AP would evoke neurotransmitter release.
Indeed, reducing this probability by lowering Ca2⌥ concentra-
tion ([Ca2⌥]) slowed the rate of synaptic depression and
increased the limiting frequency (Fig. 2B; see refs. 11 and 12).

Release probability therefore determines the frequency range
within which rate coding is possible. The model also shows that
beyond the limiting frequency, the average depolarization
caused during the train is independent of release probability
(see Eq. 3). Changing release probability therefore results in
redistribution of synaptic efficacy between spikes in a train and
not in a change in absolute synaptic efficacy (see also ref. 7).
A natural range of USE values (0.1–0.95) was found within a
population of 33 experimentally examined synaptic connec-
tions, which is consistent with the range of release probabilities
found at these synapses using a binomial model (ref. 13; H.M.,
J. Lübke, A. Roth, M. Frotscher, and B. Sakmann, unpublished
data).

The range of USE values predicts a continuum of frequency-
dependent behaviors under in vivo conditions where neurons
are firing irregularly (14) (Fig. 3A). To test the accuracy of this
prediction, the synaptic behavior for a particular synaptic

FIG. 1. Functional synaptic model. (A) Stimulation paradigm used
to obtain the parameters for the model. (B) Postsynaptic potential
generated by a regular spike train (Bottom), at a frequency of 23 Hz
measured experimentally (Top; average more than 50 sweeps), and
computed with the model (Middle). (C) Same as B for irregular spike
train (different synaptic connection). Postsynaptic potential is com-
puted using a passive membrane mechanism [⌅mem(dV�dt) ⌃ ⌅V ⌥
RinIsyn(t)] with an input resistance of 100M⇥. ⌅rec is obtained by
measuring the time of recovery for a synapse after stimulating it with
high frequency burst (single exponential). Other parameters are
determined by iteratively comparing model and experimental traces
until the best match with the initial (R1), transition (R2 and others),
and stationary responses is achieved. Parameters in B: ⌅inact ⌃ 3 msec,
⌅rec ⌃ 800 msec, USE ⌃ 0.67, ASE ⌃ 250 pA, ⌅mem ⌃ 50 msec.
Parameters in C: ⌅inact ⌃ 3 msec, ⌅rec ⌃ 450 msec, USE ⌃ 0.55, ASE ⌃
530 pA, ⌅mem ⌃ 30 msec.
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fraction of resources in the effective state, E. Trial-by-trial
f luctuations in synaptic responses, including failures, are ne-
glected in the model because synaptic inputs from large
populations of neurons are expected to average out these
fluctuations. USE (as well as ⌅rec and ⌅inact) is a kinetic param-
eter of the model that determines the dynamic behavior of
synaptic transmission, in particular the rate of depression. The
higher the USE, the faster synaptic resources are utilized, which
effectively leads to more rapid depression.

These equations allow iterative expressions for successive
excitatory postsynaptic currents (EPSCs) produced by a train
of presynaptic APs:

EPSCn⌥1 ⇤ EPSCn�1 ⇥ USE⇤e⌅⇧t�⌅rec

� ASE�USE�1 ⇥ e⌅⇧t�⌅rec⇤, [2]

where ⇧t is the time interval between nth and (n ⌥ 1)th AP,
and ASE is the maximal EPSC evoked when all the resources
are shifted into the effective state. In deriving Eq. 2, ⇧t was
assumed to be much larger than the inactivation time constant,
hence the dependence on ⌅inact dropped out of this equation.

RESULTS
Simulating Dynamic Synaptic Transmission. To use the

model to simulate dynamic synaptic transmission a number of
parameters have to be determined experimentally. The
postsynaptic responses to a standard stimulation protocol were
used to derive the paramters ASE, USE, and ⌅rec for a given
synapse (Fig. 1A). The model could then reproduce the
experimental traces for both regular and irregular trains of
presynaptic APs (Fig. 1 B and C).

Rate Coding. The model made several predictions, both
about the properties of synaptic transmission and how these
properties influence the way in which the signal transmitted
between pyramidal neurons could be coded. The first predic-
tion was that if the synapses are driven beyond a certain
frequency, defined as the limiting frequency, then the station-
ary amplitude of individual EPSPs reached during a regular
spike train would begin to decrease in inverse proportion to the
frequency (1�f ):

EPSCst ⇥
E

f⌅rec
. [3]

To test the accuracy of this prediction we recorded the synaptic
responses at different frequencies and found the prediction to
be true in all of 11 cases (Fig. 2 A and B). The limiting
frequencies were between 10 and 25 Hz. The 1�f law of these
synapses indicates that above the limiting frequency the aver-
age postsynaptic depolarization from resting membrane po-
tential saturates as presynaptic firing rates increase (Fig. 2C).
The limiting frequency therefore sets the frequency range
within which these synapses are able to transmit information
about the presynaptic firing rate.

The second prediction was that factors that determine the
rate of synaptic depression also determine the limiting fre-
quency:

flim ⇥ 1��⌅recUSE⇤. [4]

In the model, the higher USE is, the faster synaptic responses
depress to a stationary level for a given frequency of stimu-
lation and the lower the limiting frequency is.

Depending on the biophysical mechanism of depression, the
USE parameter can be in part or completely determined by the
probability that an AP would evoke neurotransmitter release.
Indeed, reducing this probability by lowering Ca2⌥ concentra-
tion ([Ca2⌥]) slowed the rate of synaptic depression and
increased the limiting frequency (Fig. 2B; see refs. 11 and 12).

Release probability therefore determines the frequency range
within which rate coding is possible. The model also shows that
beyond the limiting frequency, the average depolarization
caused during the train is independent of release probability
(see Eq. 3). Changing release probability therefore results in
redistribution of synaptic efficacy between spikes in a train and
not in a change in absolute synaptic efficacy (see also ref. 7).
A natural range of USE values (0.1–0.95) was found within a
population of 33 experimentally examined synaptic connec-
tions, which is consistent with the range of release probabilities
found at these synapses using a binomial model (ref. 13; H.M.,
J. Lübke, A. Roth, M. Frotscher, and B. Sakmann, unpublished
data).

The range of USE values predicts a continuum of frequency-
dependent behaviors under in vivo conditions where neurons
are firing irregularly (14) (Fig. 3A). To test the accuracy of this
prediction, the synaptic behavior for a particular synaptic

FIG. 1. Functional synaptic model. (A) Stimulation paradigm used
to obtain the parameters for the model. (B) Postsynaptic potential
generated by a regular spike train (Bottom), at a frequency of 23 Hz
measured experimentally (Top; average more than 50 sweeps), and
computed with the model (Middle). (C) Same as B for irregular spike
train (different synaptic connection). Postsynaptic potential is com-
puted using a passive membrane mechanism [⌅mem(dV�dt) ⌃ ⌅V ⌥
RinIsyn(t)] with an input resistance of 100M⇥. ⌅rec is obtained by
measuring the time of recovery for a synapse after stimulating it with
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determined by iteratively comparing model and experimental traces
until the best match with the initial (R1), transition (R2 and others),
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fraction of resources in the effective state, E. Trial-by-trial
f luctuations in synaptic responses, including failures, are ne-
glected in the model because synaptic inputs from large
populations of neurons are expected to average out these
fluctuations. USE (as well as ⌅rec and ⌅inact) is a kinetic param-
eter of the model that determines the dynamic behavior of
synaptic transmission, in particular the rate of depression. The
higher the USE, the faster synaptic resources are utilized, which
effectively leads to more rapid depression.

These equations allow iterative expressions for successive
excitatory postsynaptic currents (EPSCs) produced by a train
of presynaptic APs:

EPSCn⌥1 ⇤ EPSCn�1 ⇥ USE⇤e⌅⇧t�⌅rec

� ASE�USE�1 ⇥ e⌅⇧t�⌅rec⇤, [2]

where ⇧t is the time interval between nth and (n ⌥ 1)th AP,
and ASE is the maximal EPSC evoked when all the resources
are shifted into the effective state. In deriving Eq. 2, ⇧t was
assumed to be much larger than the inactivation time constant,
hence the dependence on ⌅inact dropped out of this equation.

RESULTS
Simulating Dynamic Synaptic Transmission. To use the

model to simulate dynamic synaptic transmission a number of
parameters have to be determined experimentally. The
postsynaptic responses to a standard stimulation protocol were
used to derive the paramters ASE, USE, and ⌅rec for a given
synapse (Fig. 1A). The model could then reproduce the
experimental traces for both regular and irregular trains of
presynaptic APs (Fig. 1 B and C).

Rate Coding. The model made several predictions, both
about the properties of synaptic transmission and how these
properties influence the way in which the signal transmitted
between pyramidal neurons could be coded. The first predic-
tion was that if the synapses are driven beyond a certain
frequency, defined as the limiting frequency, then the station-
ary amplitude of individual EPSPs reached during a regular
spike train would begin to decrease in inverse proportion to the
frequency (1�f ):

EPSCst ⇥
E

f⌅rec
. [3]

To test the accuracy of this prediction we recorded the synaptic
responses at different frequencies and found the prediction to
be true in all of 11 cases (Fig. 2 A and B). The limiting
frequencies were between 10 and 25 Hz. The 1�f law of these
synapses indicates that above the limiting frequency the aver-
age postsynaptic depolarization from resting membrane po-
tential saturates as presynaptic firing rates increase (Fig. 2C).
The limiting frequency therefore sets the frequency range
within which these synapses are able to transmit information
about the presynaptic firing rate.

The second prediction was that factors that determine the
rate of synaptic depression also determine the limiting fre-
quency:

flim ⇥ 1��⌅recUSE⇤. [4]

In the model, the higher USE is, the faster synaptic responses
depress to a stationary level for a given frequency of stimu-
lation and the lower the limiting frequency is.

Depending on the biophysical mechanism of depression, the
USE parameter can be in part or completely determined by the
probability that an AP would evoke neurotransmitter release.
Indeed, reducing this probability by lowering Ca2⌥ concentra-
tion ([Ca2⌥]) slowed the rate of synaptic depression and
increased the limiting frequency (Fig. 2B; see refs. 11 and 12).

Release probability therefore determines the frequency range
within which rate coding is possible. The model also shows that
beyond the limiting frequency, the average depolarization
caused during the train is independent of release probability
(see Eq. 3). Changing release probability therefore results in
redistribution of synaptic efficacy between spikes in a train and
not in a change in absolute synaptic efficacy (see also ref. 7).
A natural range of USE values (0.1–0.95) was found within a
population of 33 experimentally examined synaptic connec-
tions, which is consistent with the range of release probabilities
found at these synapses using a binomial model (ref. 13; H.M.,
J. Lübke, A. Roth, M. Frotscher, and B. Sakmann, unpublished
data).

The range of USE values predicts a continuum of frequency-
dependent behaviors under in vivo conditions where neurons
are firing irregularly (14) (Fig. 3A). To test the accuracy of this
prediction, the synaptic behavior for a particular synaptic
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measured experimentally (Top; average more than 50 sweeps), and
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RinIsyn(t)] with an input resistance of 100M⇥. ⌅rec is obtained by
measuring the time of recovery for a synapse after stimulating it with
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f luctuations in synaptic responses, including failures, are ne-
glected in the model because synaptic inputs from large
populations of neurons are expected to average out these
fluctuations. USE (as well as ⌅rec and ⌅inact) is a kinetic param-
eter of the model that determines the dynamic behavior of
synaptic transmission, in particular the rate of depression. The
higher the USE, the faster synaptic resources are utilized, which
effectively leads to more rapid depression.

These equations allow iterative expressions for successive
excitatory postsynaptic currents (EPSCs) produced by a train
of presynaptic APs:
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where ⇧t is the time interval between nth and (n ⌥ 1)th AP,
and ASE is the maximal EPSC evoked when all the resources
are shifted into the effective state. In deriving Eq. 2, ⇧t was
assumed to be much larger than the inactivation time constant,
hence the dependence on ⌅inact dropped out of this equation.

RESULTS
Simulating Dynamic Synaptic Transmission. To use the

model to simulate dynamic synaptic transmission a number of
parameters have to be determined experimentally. The
postsynaptic responses to a standard stimulation protocol were
used to derive the paramters ASE, USE, and ⌅rec for a given
synapse (Fig. 1A). The model could then reproduce the
experimental traces for both regular and irregular trains of
presynaptic APs (Fig. 1 B and C).

Rate Coding. The model made several predictions, both
about the properties of synaptic transmission and how these
properties influence the way in which the signal transmitted
between pyramidal neurons could be coded. The first predic-
tion was that if the synapses are driven beyond a certain
frequency, defined as the limiting frequency, then the station-
ary amplitude of individual EPSPs reached during a regular
spike train would begin to decrease in inverse proportion to the
frequency (1�f ):

EPSCst ⇥
E

f⌅rec
. [3]

To test the accuracy of this prediction we recorded the synaptic
responses at different frequencies and found the prediction to
be true in all of 11 cases (Fig. 2 A and B). The limiting
frequencies were between 10 and 25 Hz. The 1�f law of these
synapses indicates that above the limiting frequency the aver-
age postsynaptic depolarization from resting membrane po-
tential saturates as presynaptic firing rates increase (Fig. 2C).
The limiting frequency therefore sets the frequency range
within which these synapses are able to transmit information
about the presynaptic firing rate.

The second prediction was that factors that determine the
rate of synaptic depression also determine the limiting fre-
quency:

flim ⇥ 1��⌅recUSE⇤. [4]

In the model, the higher USE is, the faster synaptic responses
depress to a stationary level for a given frequency of stimu-
lation and the lower the limiting frequency is.

Depending on the biophysical mechanism of depression, the
USE parameter can be in part or completely determined by the
probability that an AP would evoke neurotransmitter release.
Indeed, reducing this probability by lowering Ca2⌥ concentra-
tion ([Ca2⌥]) slowed the rate of synaptic depression and
increased the limiting frequency (Fig. 2B; see refs. 11 and 12).

Release probability therefore determines the frequency range
within which rate coding is possible. The model also shows that
beyond the limiting frequency, the average depolarization
caused during the train is independent of release probability
(see Eq. 3). Changing release probability therefore results in
redistribution of synaptic efficacy between spikes in a train and
not in a change in absolute synaptic efficacy (see also ref. 7).
A natural range of USE values (0.1–0.95) was found within a
population of 33 experimentally examined synaptic connec-
tions, which is consistent with the range of release probabilities
found at these synapses using a binomial model (ref. 13; H.M.,
J. Lübke, A. Roth, M. Frotscher, and B. Sakmann, unpublished
data).

The range of USE values predicts a continuum of frequency-
dependent behaviors under in vivo conditions where neurons
are firing irregularly (14) (Fig. 3A). To test the accuracy of this
prediction, the synaptic behavior for a particular synaptic

FIG. 1. Functional synaptic model. (A) Stimulation paradigm used
to obtain the parameters for the model. (B) Postsynaptic potential
generated by a regular spike train (Bottom), at a frequency of 23 Hz
measured experimentally (Top; average more than 50 sweeps), and
computed with the model (Middle). (C) Same as B for irregular spike
train (different synaptic connection). Postsynaptic potential is com-
puted using a passive membrane mechanism [⌅mem(dV�dt) ⌃ ⌅V ⌥
RinIsyn(t)] with an input resistance of 100M⇥. ⌅rec is obtained by
measuring the time of recovery for a synapse after stimulating it with
high frequency burst (single exponential). Other parameters are
determined by iteratively comparing model and experimental traces
until the best match with the initial (R1), transition (R2 and others),
and stationary responses is achieved. Parameters in B: ⌅inact ⌃ 3 msec,
⌅rec ⌃ 800 msec, USE ⌃ 0.67, ASE ⌃ 250 pA, ⌅mem ⌃ 50 msec.
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fraction of resources in the effective state, E. Trial-by-trial
f luctuations in synaptic responses, including failures, are ne-
glected in the model because synaptic inputs from large
populations of neurons are expected to average out these
fluctuations. USE (as well as ⌅rec and ⌅inact) is a kinetic param-
eter of the model that determines the dynamic behavior of
synaptic transmission, in particular the rate of depression. The
higher the USE, the faster synaptic resources are utilized, which
effectively leads to more rapid depression.

These equations allow iterative expressions for successive
excitatory postsynaptic currents (EPSCs) produced by a train
of presynaptic APs:

EPSCn⌥1 ⇤ EPSCn�1 ⇥ USE⇤e⌅⇧t�⌅rec

� ASE�USE�1 ⇥ e⌅⇧t�⌅rec⇤, [2]

where ⇧t is the time interval between nth and (n ⌥ 1)th AP,
and ASE is the maximal EPSC evoked when all the resources
are shifted into the effective state. In deriving Eq. 2, ⇧t was
assumed to be much larger than the inactivation time constant,
hence the dependence on ⌅inact dropped out of this equation.

RESULTS
Simulating Dynamic Synaptic Transmission. To use the

model to simulate dynamic synaptic transmission a number of
parameters have to be determined experimentally. The
postsynaptic responses to a standard stimulation protocol were
used to derive the paramters ASE, USE, and ⌅rec for a given
synapse (Fig. 1A). The model could then reproduce the
experimental traces for both regular and irregular trains of
presynaptic APs (Fig. 1 B and C).

Rate Coding. The model made several predictions, both
about the properties of synaptic transmission and how these
properties influence the way in which the signal transmitted
between pyramidal neurons could be coded. The first predic-
tion was that if the synapses are driven beyond a certain
frequency, defined as the limiting frequency, then the station-
ary amplitude of individual EPSPs reached during a regular
spike train would begin to decrease in inverse proportion to the
frequency (1�f ):

EPSCst ⇥
E

f⌅rec
. [3]

To test the accuracy of this prediction we recorded the synaptic
responses at different frequencies and found the prediction to
be true in all of 11 cases (Fig. 2 A and B). The limiting
frequencies were between 10 and 25 Hz. The 1�f law of these
synapses indicates that above the limiting frequency the aver-
age postsynaptic depolarization from resting membrane po-
tential saturates as presynaptic firing rates increase (Fig. 2C).
The limiting frequency therefore sets the frequency range
within which these synapses are able to transmit information
about the presynaptic firing rate.

The second prediction was that factors that determine the
rate of synaptic depression also determine the limiting fre-
quency:

flim ⇥ 1��⌅recUSE⇤. [4]

In the model, the higher USE is, the faster synaptic responses
depress to a stationary level for a given frequency of stimu-
lation and the lower the limiting frequency is.

Depending on the biophysical mechanism of depression, the
USE parameter can be in part or completely determined by the
probability that an AP would evoke neurotransmitter release.
Indeed, reducing this probability by lowering Ca2⌥ concentra-
tion ([Ca2⌥]) slowed the rate of synaptic depression and
increased the limiting frequency (Fig. 2B; see refs. 11 and 12).

Release probability therefore determines the frequency range
within which rate coding is possible. The model also shows that
beyond the limiting frequency, the average depolarization
caused during the train is independent of release probability
(see Eq. 3). Changing release probability therefore results in
redistribution of synaptic efficacy between spikes in a train and
not in a change in absolute synaptic efficacy (see also ref. 7).
A natural range of USE values (0.1–0.95) was found within a
population of 33 experimentally examined synaptic connec-
tions, which is consistent with the range of release probabilities
found at these synapses using a binomial model (ref. 13; H.M.,
J. Lübke, A. Roth, M. Frotscher, and B. Sakmann, unpublished
data).

The range of USE values predicts a continuum of frequency-
dependent behaviors under in vivo conditions where neurons
are firing irregularly (14) (Fig. 3A). To test the accuracy of this
prediction, the synaptic behavior for a particular synaptic

FIG. 1. Functional synaptic model. (A) Stimulation paradigm used
to obtain the parameters for the model. (B) Postsynaptic potential
generated by a regular spike train (Bottom), at a frequency of 23 Hz
measured experimentally (Top; average more than 50 sweeps), and
computed with the model (Middle). (C) Same as B for irregular spike
train (different synaptic connection). Postsynaptic potential is com-
puted using a passive membrane mechanism [⌅mem(dV�dt) ⌃ ⌅V ⌥
RinIsyn(t)] with an input resistance of 100M⇥. ⌅rec is obtained by
measuring the time of recovery for a synapse after stimulating it with
high frequency burst (single exponential). Other parameters are
determined by iteratively comparing model and experimental traces
until the best match with the initial (R1), transition (R2 and others),
and stationary responses is achieved. Parameters in B: ⌅inact ⌃ 3 msec,
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f luctuations in synaptic responses, including failures, are ne-
glected in the model because synaptic inputs from large
populations of neurons are expected to average out these
fluctuations. USE (as well as ⌅rec and ⌅inact) is a kinetic param-
eter of the model that determines the dynamic behavior of
synaptic transmission, in particular the rate of depression. The
higher the USE, the faster synaptic resources are utilized, which
effectively leads to more rapid depression.

These equations allow iterative expressions for successive
excitatory postsynaptic currents (EPSCs) produced by a train
of presynaptic APs:

EPSCn⌥1 ⇤ EPSCn�1 ⇥ USE⇤e⌅⇧t�⌅rec

� ASE�USE�1 ⇥ e⌅⇧t�⌅rec⇤, [2]

where ⇧t is the time interval between nth and (n ⌥ 1)th AP,
and ASE is the maximal EPSC evoked when all the resources
are shifted into the effective state. In deriving Eq. 2, ⇧t was
assumed to be much larger than the inactivation time constant,
hence the dependence on ⌅inact dropped out of this equation.

RESULTS
Simulating Dynamic Synaptic Transmission. To use the

model to simulate dynamic synaptic transmission a number of
parameters have to be determined experimentally. The
postsynaptic responses to a standard stimulation protocol were
used to derive the paramters ASE, USE, and ⌅rec for a given
synapse (Fig. 1A). The model could then reproduce the
experimental traces for both regular and irregular trains of
presynaptic APs (Fig. 1 B and C).

Rate Coding. The model made several predictions, both
about the properties of synaptic transmission and how these
properties influence the way in which the signal transmitted
between pyramidal neurons could be coded. The first predic-
tion was that if the synapses are driven beyond a certain
frequency, defined as the limiting frequency, then the station-
ary amplitude of individual EPSPs reached during a regular
spike train would begin to decrease in inverse proportion to the
frequency (1�f ):

EPSCst ⇥
E

f⌅rec
. [3]

To test the accuracy of this prediction we recorded the synaptic
responses at different frequencies and found the prediction to
be true in all of 11 cases (Fig. 2 A and B). The limiting
frequencies were between 10 and 25 Hz. The 1�f law of these
synapses indicates that above the limiting frequency the aver-
age postsynaptic depolarization from resting membrane po-
tential saturates as presynaptic firing rates increase (Fig. 2C).
The limiting frequency therefore sets the frequency range
within which these synapses are able to transmit information
about the presynaptic firing rate.

The second prediction was that factors that determine the
rate of synaptic depression also determine the limiting fre-
quency:

flim ⇥ 1��⌅recUSE⇤. [4]

In the model, the higher USE is, the faster synaptic responses
depress to a stationary level for a given frequency of stimu-
lation and the lower the limiting frequency is.

Depending on the biophysical mechanism of depression, the
USE parameter can be in part or completely determined by the
probability that an AP would evoke neurotransmitter release.
Indeed, reducing this probability by lowering Ca2⌥ concentra-
tion ([Ca2⌥]) slowed the rate of synaptic depression and
increased the limiting frequency (Fig. 2B; see refs. 11 and 12).

Release probability therefore determines the frequency range
within which rate coding is possible. The model also shows that
beyond the limiting frequency, the average depolarization
caused during the train is independent of release probability
(see Eq. 3). Changing release probability therefore results in
redistribution of synaptic efficacy between spikes in a train and
not in a change in absolute synaptic efficacy (see also ref. 7).
A natural range of USE values (0.1–0.95) was found within a
population of 33 experimentally examined synaptic connec-
tions, which is consistent with the range of release probabilities
found at these synapses using a binomial model (ref. 13; H.M.,
J. Lübke, A. Roth, M. Frotscher, and B. Sakmann, unpublished
data).

The range of USE values predicts a continuum of frequency-
dependent behaviors under in vivo conditions where neurons
are firing irregularly (14) (Fig. 3A). To test the accuracy of this
prediction, the synaptic behavior for a particular synaptic

FIG. 1. Functional synaptic model. (A) Stimulation paradigm used
to obtain the parameters for the model. (B) Postsynaptic potential
generated by a regular spike train (Bottom), at a frequency of 23 Hz
measured experimentally (Top; average more than 50 sweeps), and
computed with the model (Middle). (C) Same as B for irregular spike
train (different synaptic connection). Postsynaptic potential is com-
puted using a passive membrane mechanism [⌅mem(dV�dt) ⌃ ⌅V ⌥
RinIsyn(t)] with an input resistance of 100M⇥. ⌅rec is obtained by
measuring the time of recovery for a synapse after stimulating it with
high frequency burst (single exponential). Other parameters are
determined by iteratively comparing model and experimental traces
until the best match with the initial (R1), transition (R2 and others),
and stationary responses is achieved. Parameters in B: ⌅inact ⌃ 3 msec,
⌅rec ⌃ 800 msec, USE ⌃ 0.67, ASE ⌃ 250 pA, ⌅mem ⌃ 50 msec.
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fraction of resources in the effective state, E. Trial-by-trial
f luctuations in synaptic responses, including failures, are ne-
glected in the model because synaptic inputs from large
populations of neurons are expected to average out these
fluctuations. USE (as well as ⌅rec and ⌅inact) is a kinetic param-
eter of the model that determines the dynamic behavior of
synaptic transmission, in particular the rate of depression. The
higher the USE, the faster synaptic resources are utilized, which
effectively leads to more rapid depression.

These equations allow iterative expressions for successive
excitatory postsynaptic currents (EPSCs) produced by a train
of presynaptic APs:

EPSCn⌥1 ⇤ EPSCn�1 ⇥ USE⇤e⌅⇧t�⌅rec

� ASE�USE�1 ⇥ e⌅⇧t�⌅rec⇤, [2]

where ⇧t is the time interval between nth and (n ⌥ 1)th AP,
and ASE is the maximal EPSC evoked when all the resources
are shifted into the effective state. In deriving Eq. 2, ⇧t was
assumed to be much larger than the inactivation time constant,
hence the dependence on ⌅inact dropped out of this equation.

RESULTS
Simulating Dynamic Synaptic Transmission. To use the

model to simulate dynamic synaptic transmission a number of
parameters have to be determined experimentally. The
postsynaptic responses to a standard stimulation protocol were
used to derive the paramters ASE, USE, and ⌅rec for a given
synapse (Fig. 1A). The model could then reproduce the
experimental traces for both regular and irregular trains of
presynaptic APs (Fig. 1 B and C).

Rate Coding. The model made several predictions, both
about the properties of synaptic transmission and how these
properties influence the way in which the signal transmitted
between pyramidal neurons could be coded. The first predic-
tion was that if the synapses are driven beyond a certain
frequency, defined as the limiting frequency, then the station-
ary amplitude of individual EPSPs reached during a regular
spike train would begin to decrease in inverse proportion to the
frequency (1�f ):

EPSCst ⇥
E

f⌅rec
. [3]

To test the accuracy of this prediction we recorded the synaptic
responses at different frequencies and found the prediction to
be true in all of 11 cases (Fig. 2 A and B). The limiting
frequencies were between 10 and 25 Hz. The 1�f law of these
synapses indicates that above the limiting frequency the aver-
age postsynaptic depolarization from resting membrane po-
tential saturates as presynaptic firing rates increase (Fig. 2C).
The limiting frequency therefore sets the frequency range
within which these synapses are able to transmit information
about the presynaptic firing rate.

The second prediction was that factors that determine the
rate of synaptic depression also determine the limiting fre-
quency:

flim ⇥ 1��⌅recUSE⇤. [4]

In the model, the higher USE is, the faster synaptic responses
depress to a stationary level for a given frequency of stimu-
lation and the lower the limiting frequency is.

Depending on the biophysical mechanism of depression, the
USE parameter can be in part or completely determined by the
probability that an AP would evoke neurotransmitter release.
Indeed, reducing this probability by lowering Ca2⌥ concentra-
tion ([Ca2⌥]) slowed the rate of synaptic depression and
increased the limiting frequency (Fig. 2B; see refs. 11 and 12).

Release probability therefore determines the frequency range
within which rate coding is possible. The model also shows that
beyond the limiting frequency, the average depolarization
caused during the train is independent of release probability
(see Eq. 3). Changing release probability therefore results in
redistribution of synaptic efficacy between spikes in a train and
not in a change in absolute synaptic efficacy (see also ref. 7).
A natural range of USE values (0.1–0.95) was found within a
population of 33 experimentally examined synaptic connec-
tions, which is consistent with the range of release probabilities
found at these synapses using a binomial model (ref. 13; H.M.,
J. Lübke, A. Roth, M. Frotscher, and B. Sakmann, unpublished
data).

The range of USE values predicts a continuum of frequency-
dependent behaviors under in vivo conditions where neurons
are firing irregularly (14) (Fig. 3A). To test the accuracy of this
prediction, the synaptic behavior for a particular synaptic

FIG. 1. Functional synaptic model. (A) Stimulation paradigm used
to obtain the parameters for the model. (B) Postsynaptic potential
generated by a regular spike train (Bottom), at a frequency of 23 Hz
measured experimentally (Top; average more than 50 sweeps), and
computed with the model (Middle). (C) Same as B for irregular spike
train (different synaptic connection). Postsynaptic potential is com-
puted using a passive membrane mechanism [⌅mem(dV�dt) ⌃ ⌅V ⌥
RinIsyn(t)] with an input resistance of 100M⇥. ⌅rec is obtained by
measuring the time of recovery for a synapse after stimulating it with
high frequency burst (single exponential). Other parameters are
determined by iteratively comparing model and experimental traces
until the best match with the initial (R1), transition (R2 and others),
and stationary responses is achieved. Parameters in B: ⌅inact ⌃ 3 msec,
⌅rec ⌃ 800 msec, USE ⌃ 0.67, ASE ⌃ 250 pA, ⌅mem ⌃ 50 msec.
Parameters in C: ⌅inact ⌃ 3 msec, ⌅rec ⌃ 450 msec, USE ⌃ 0.55, ASE ⌃
530 pA, ⌅mem ⌃ 30 msec.

720 Neurobiology: Tsodyks and Markram Proc. Natl. Acad. Sci. USA 94 (1997)
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Figure 1: (A) The presynaptic membrane potential (black, noisy line) is converted to an inhomogeneous
Poisson spike train (vertical lines). The optimal estimator mean ± one s.d. is shown in red. Facilitation
is seen in the first three pairs of spikes. The parameters used for the simulation are u0 = 0, σ2

OU = 1
mV2, τm = 50 ms, g0 = 50 Hz, β = 8.4 mV−1, η0 = −30 mV and τr = 25 ms. (B) The four regions of
different STP dynamics as they appear in the plane spanned by α and τr in the parameter space (where
α is defined by η0 = −αβσ2

∞). The insets show a sketch of the typical paired-pulse ratio within each
region, as a function of the paired-pulse interval. The region boundaries correspond to the criterion
in equation (5) and to τr = τm. (C) The model fit (red solid line) to STP data (black dots) from a
facilitatory synapse in [1]. The shaded region corresponds to parameters randomly chosen within 5% of
the best-fit parameters τm = 79 ms, g0 = 1.9 Hz, β = 17 mV−1, η0 = −4.4 mV and τr = 101 ms.

that the first spike arrives at t = 0 before which
the system has settled at the stationary point
(µ∞, σ∞). After the spike, µ increases by βσ2

∞,
and the adaptive kernel convolution contributes
η0 = limt↘0 η(t). Thus, γ changes instantaneously
according to

γ(0+) = γ(0−) exp
[

β2σ2
∞ + βη0

]

(5)

Depending on the precise value of η0, the exponen-
tial factor in (5) can be smaller or greater than
unity. In the latter case this will lead to short-
term depression, as the increase in γ will cause
the derivative of σ2 to become negative, such that
the next EPSP will be smaller than the first one.
If, on the other hand, η0 is sufficiently negative
(i.e. η0 < −βσ2

∞), σ2 will increase immediately
after the spike, potentially leading to short-term
facilitation.

Numerically, the parameter space is found to
have four distinct regions, featuring either pure
facilitation, pure depression or a mix of the two
with either facilitation preceding depression or
vice versa (c.f. fig.1B). This allows the model to
accommodate a wide range of STP dynamics. In-
deed, a fit to the paired-pulse ratio of a facilita-
tory synapse in the Schaffer collateral of rat [1] is
shown in fig.1C.

The STP theory proposed here predicts a link
between the degree of refractoriness in the spik-

ing of the presynaptic cell and the STP proper-
ties of the downstream synapses. In particular,
a cell which is highly refractory should produce
synapses which have pronounced facilitation. Fur-
thermore, the model predicts a tight link between
the adaptation time-constant and the facilitation
time-constant. This prediction should be tested
experimentally by recording both the presynaptic
statistics and the STP properties within the same
preparation.
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ẋ = �x� 1
⌧/2

� �(t)�2
x

2



Roscoff 26.6.2017

Paired-pulse ratio

35

0 0.5 1
!2

0

2

4

6

time !s"

m
em
br
an
e
po
te
nt
ia
l!
m
V
"

" " " " " " " " " " " " " " " " " " " " " "

" " " " " " " " " " " " " " " " " " " " " "

" " " " " " " " " " " " " " " " " " " " " "

" " " " " " " " " " " " " " " " " " " " " "

" " " " " " " " " " " " " " " " " " " " " "

" " " " " " " " " " " " " " " " " " " " " "

" " " " " " " " " " " " " " " " " " " " " "

" " " " " " " " " " " " " " " " " " " " " "

" " " " " " " " " " " " " " " " " " " " " "

" " " " " " " " " " " " " " " " " " " " " "

" " " " " " " " " " " " " " " " " " " " " "

" " " " " " " " " " " " " " " " " " " " " "

" " " " " " " " " " " " " " " " " " " " " "

" " " " " " " " " " " " " " " " " " " " " "

" " " " " " " " " " " " " " " " " " " " " "

" " " " " " " " " " " " " " " " " " " " "

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

! ! !

# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #

# # # # # # # # # # #

# # # # # # # # # # #

# # # # # # # # # # #

# # # # # # # # # # #

# # # # # # # # # # #

# # #

##

##

##

##

##

##

##

##

##

##

##

##

##

##

0 1 2 3
0

1

2

3

4

Α

Τ
r#
Τ
m

0 20 40 60 80 1000

1

2

3

interpulse interval !ms"

pa
ire
d!
pu
ls
e
ra
tio

A B C

Figure 1: (A) The presynaptic membrane potential (black, noisy line) is converted to an inhomogeneous
Poisson spike train (vertical lines). The optimal estimator mean ± one s.d. is shown in red. Facilitation
is seen in the first three pairs of spikes. The parameters used for the simulation are u0 = 0, σ2

OU = 1
mV2, τm = 50 ms, g0 = 50 Hz, β = 8.4 mV−1, η0 = −30 mV and τr = 25 ms. (B) The four regions of
different STP dynamics as they appear in the plane spanned by α and τr in the parameter space (where
α is defined by η0 = −αβσ2

∞). The insets show a sketch of the typical paired-pulse ratio within each
region, as a function of the paired-pulse interval. The region boundaries correspond to the criterion
in equation (5) and to τr = τm. (C) The model fit (red solid line) to STP data (black dots) from a
facilitatory synapse in [1]. The shaded region corresponds to parameters randomly chosen within 5% of
the best-fit parameters τm = 79 ms, g0 = 1.9 Hz, β = 17 mV−1, η0 = −4.4 mV and τr = 101 ms.

that the first spike arrives at t = 0 before which
the system has settled at the stationary point
(µ∞, σ∞). After the spike, µ increases by βσ2

∞,
and the adaptive kernel convolution contributes
η0 = limt↘0 η(t). Thus, γ changes instantaneously
according to

γ(0+) = γ(0−) exp
[

β2σ2
∞ + βη0

]

(5)

Depending on the precise value of η0, the exponen-
tial factor in (5) can be smaller or greater than
unity. In the latter case this will lead to short-
term depression, as the increase in γ will cause
the derivative of σ2 to become negative, such that
the next EPSP will be smaller than the first one.
If, on the other hand, η0 is sufficiently negative
(i.e. η0 < −βσ2

∞), σ2 will increase immediately
after the spike, potentially leading to short-term
facilitation.

Numerically, the parameter space is found to
have four distinct regions, featuring either pure
facilitation, pure depression or a mix of the two
with either facilitation preceding depression or
vice versa (c.f. fig.1B). This allows the model to
accommodate a wide range of STP dynamics. In-
deed, a fit to the paired-pulse ratio of a facilita-
tory synapse in the Schaffer collateral of rat [1] is
shown in fig.1C.

The STP theory proposed here predicts a link
between the degree of refractoriness in the spik-

ing of the presynaptic cell and the STP proper-
ties of the downstream synapses. In particular,
a cell which is highly refractory should produce
synapses which have pronounced facilitation. Fur-
thermore, the model predicts a tight link between
the adaptation time-constant and the facilitation
time-constant. This prediction should be tested
experimentally by recording both the presynaptic
statistics and the STP properties within the same
preparation.
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Figure 1: (A) The presynaptic membrane potential (black, noisy line) is converted to an inhomogeneous
Poisson spike train (vertical lines). The optimal estimator mean ± one s.d. is shown in red. Facilitation
is seen in the first three pairs of spikes. The parameters used for the simulation are u0 = 0, σ2

OU = 1
mV2, τm = 50 ms, g0 = 50 Hz, β = 8.4 mV−1, η0 = −30 mV and τr = 25 ms. (B) The four regions of
different STP dynamics as they appear in the plane spanned by α and τr in the parameter space (where
α is defined by η0 = −αβσ2

∞). The insets show a sketch of the typical paired-pulse ratio within each
region, as a function of the paired-pulse interval. The region boundaries correspond to the criterion
in equation (5) and to τr = τm. (C) The model fit (red solid line) to STP data (black dots) from a
facilitatory synapse in [1]. The shaded region corresponds to parameters randomly chosen within 5% of
the best-fit parameters τm = 79 ms, g0 = 1.9 Hz, β = 17 mV−1, η0 = −4.4 mV and τr = 101 ms.

that the first spike arrives at t = 0 before which
the system has settled at the stationary point
(µ∞, σ∞). After the spike, µ increases by βσ2

∞,
and the adaptive kernel convolution contributes
η0 = limt↘0 η(t). Thus, γ changes instantaneously
according to

γ(0+) = γ(0−) exp
[

β2σ2
∞ + βη0

]

(5)

Depending on the precise value of η0, the exponen-
tial factor in (5) can be smaller or greater than
unity. In the latter case this will lead to short-
term depression, as the increase in γ will cause
the derivative of σ2 to become negative, such that
the next EPSP will be smaller than the first one.
If, on the other hand, η0 is sufficiently negative
(i.e. η0 < −βσ2

∞), σ2 will increase immediately
after the spike, potentially leading to short-term
facilitation.

Numerically, the parameter space is found to
have four distinct regions, featuring either pure
facilitation, pure depression or a mix of the two
with either facilitation preceding depression or
vice versa (c.f. fig.1B). This allows the model to
accommodate a wide range of STP dynamics. In-
deed, a fit to the paired-pulse ratio of a facilita-
tory synapse in the Schaffer collateral of rat [1] is
shown in fig.1C.

The STP theory proposed here predicts a link
between the degree of refractoriness in the spik-

ing of the presynaptic cell and the STP proper-
ties of the downstream synapses. In particular,
a cell which is highly refractory should produce
synapses which have pronounced facilitation. Fur-
thermore, the model predicts a tight link between
the adaptation time-constant and the facilitation
time-constant. This prediction should be tested
experimentally by recording both the presynaptic
statistics and the STP properties within the same
preparation.
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Conclusion II

• Short-term synaptic dynamics is not an 
undesirable variability but can be useful 
for computation.

• Synapses with short-term plasticity 
closely match the behavior of the optimal 
estimator of the presynaptic membrane 
potential.

• Predictions of the model

‣ STP properties have to be matched to the 
presynaptic neuron statistics

‣ link between facilitation and adaptation
37
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Outlook of part II

1. Learning with the GLM  
(Brea at al. 2013)  
 

2. Decoding at single synapses  
(Pfister et al. 2010)  
 

3. Decoding with the GLM  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P E R S P E C T I V E

accuracy of two commonly used neural data analysis methods scales 

with the number of simultaneously recorded neurons.

Understanding what makes neurons fire is a central question in 

neuroscience and being able to accurately predict neural activity is 

at the heart of many neural data analysis techniques 9. These tech-

niques generally ask how information about the external world is 

encoded in the spiking of neurons 10. On the other hand, a number 

of applications, such as brain-machine interfaces, aim to use neural 

firing to predict behavior or estimate what stimuli are present in 

the external world. These two issues are together referred to as the 

 neural coding problem. We want to understand how neurons encode 

information about the external world and we want to understand 

how neural signals can be decoded to provide information about the 

external world. In most cases, encoding and decoding models are 

tightly linked; leading decoding models are usually based on explicit 

models of encoding 11–13.

We focused on models of neural encoding and two general 

approaches to the neural coding problem. Many methods focus on 

describing how neural firing relates to stimuli or the movement pro-

duced by an animal, using tuning curves or receptive fields. For exam-

ple, in motor cortex, the firing of the majority of neurons appears 

to depend sinusoidally on the direction of the animal’s hand move-

ment. A second class of methods focuses on describing how neurons 

 interact and influence one another 14–20 and assume that each neuron’s 

 spiking may influence the spiking probability of other neurons. We 

fitted typical versions of both model classes to multi-electrode data 

recorded from the cortices of awake, behaving (motor task) or anes-

thetized (visual task) monkeys and determined how spike prediction 

accuracy scaled with the number of recorded neurons.

We analyzed datasets of recorded spikes using two models that both 

aim at predicting trial-by-trial spike counts: a tuning curve model that  

makes predictions based on external stimuli and a pair-wise inter-

actions model that makes predictions based on the activity of the other  

simultaneously recorded neurons (Fig. 2a). In both models, we assumed 

that spike counts on a given trial were generated by a linear nonlinear 

Poisson model 21, where the firing rate is determined either by a tuning 

curve or by coupling with the other recorded neurons. We estimated the 

parameters of these two models using maximum a posteriori estimation 

and assessed the spike prediction accuracy on trials that were not used 

during the estimation (Supplementary Methods). We were particu-

larly interested in how the number of simultaneously recorded neurons 

affects spike prediction accuracy. For the interaction model, we varied 

the ‘network size’ by using a random subsample of the other recorded 

neurons and examined how prediction accuracy varies with the number 

of neurons used in the model.

Spike data from 143 primary and pre-motor cortical neurons were 

recorded while a monkey performed a center-out reaching task 22. In 

addition, spike data from 106 primary visual cortical neurons were 

recorded while an anesthetized monkey viewed oriented gratings 23. In 

data from motor cortex, we considered sinusoidal tuning to the direction 

of hand movement, while in the data from visual cortex we considered 

tuning to the movement direction of an oriented grating. As the tuning 

curve model describes each neuron independently, spike prediction 

accuracy is constant as a function of the number of recorded neurons. 

For the interaction model, however, it is possible for spike prediction 

accuracy to vary as a function of the number of neurons (Fig. 2b). We 

found that spike prediction accuracy under the interaction model grows 

with the number of recorded neurons in both motor and visual cortex 
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from single-electrode recordings to multi-

electrode arrays and in vivo imaging techniques. 

Images of recording techniques reprinted 

from refs. 40–43 with permission of Elsevier, 

Springer Science + Business Media, and  

Am. Physiol. Soc. Image of Utah array  

reprinted from ref. 42, © 1999 IEEE. Ca 2+ 

imaging reprinted from ref. 33, © 2003 Natl. 

Acad. Sci. USA.

Network size

M
od

el
 1

Movement or stimuli
Tuning curve

Predictedspiking
Simultaneously recorded

neural activity Predictedspiking

Interactions
between neurons

a

M
od

el
 2

b

Visual cortex

S
pi

ke
 p

re
di

ct
io

n 
ac

cu
ra

cy
 (b

its
 p

er
 s

)

10 2

10 2

10 1

10 1

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Motor cortex

Tuning curves
Interactions between neurons

log(n)
c

S
ta

te
-s

pa
ce

 m
od

el
sSimultaneously recorded

neural activity

Estimated firing rates Factor 1

Factor 2

Interpretation of
neural states

Figure 2 Approaches to neural data analysis and the scaling of spike 

prediction accuracy. (a) There are two main approaches to modeling 

multi-electrode data: mapping tuning properties to describe how neurons 

relate to stimuli or movement and mapping interactions between neurons. 

These techniques aim to predict spiking based on either external variables 

or other neural signals. (b) In data recorded from motor cortex (top) and 

visual cortex (bottom), spike prediction accuracy grows when modeling 

interactions between neurons, but is constant when modeling tuning 

curves. Shaded regions denote  s.e.m. across neurons. (c) An alternative 

approach is to consider simultaneously recorded neural activity as an 

expression of a latent, low-dimensional state space. These spaces can 

be extracted by first estimating smooth firing rates for each neuron and 

then using a dimensionality reduction technique such as factor analysis. 

Features of these state spaces can then be used to predict reaction times 

or reach targets on a trial-by-trial basis or to describe neural variability. 

Purple and green ellipses represent neural variability at target onset and 

movement onset, respectively.
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Generative model

40

u = Wy

✏ + V x

with membrane potential

dN ⇠ Poisson(g(u)dt)

observation process y =
dN

dt

ytask: infer    from spiking observations x

p(x(t)|y(0 . . . t))

hidden dynamics

dx = f(x)dt+ ⌃1/2d!
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Solution

41

p(xt|y0...t) =
1

N

NX

k=1

�(xt � x

(k)
t )

sampling-based representation
p(x)

x

x

(k)

spiking neural particle filter

⇢(x) = g(u(x))with

dx(k)
= f(x

(k)
)dt+ ⌃

1/2d! +

cov(⇢(x),x)

h⇢(x)i (dN� ⇢(x(k)
)dt)
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spiking neural particle filter (sNPF)

42

dp = L†[p]dt+

✓
g

hgi � 1

◆
(dN � hgidt)p

dhxi = hf(x)idt+
✓
hgxi
hgi � hxi

◆
(dN � hgidt)

dx

(k)
= f(x

(k)
)dt+ ⌃

1/2
d! +

cov(g, x)

hgi (dN � hgidt)
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Estimated position

43
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Performance

44

g(u) = g0 exp(�u)
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NPF alleviates the curse of dimensionality

45Kutschireiter et al. 2017

[Note that here simulations are made with a diffusion observation  
instead of a point emission observation]
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Conclusion III

• Dynamic stimuli can be inferred from spiking 
recordings

• The performance of the spiking neural particle 
filter is comparable to standard particle filters

• In higher dimensions unweighted particle filters 
have the potential to alleviate the curse of 
dimensionality

46



Roscoff 26.6.2017

Summary

1. Learning with the GLM  
(Brea at al.  J. Neurosc. 2013)

47

2. Decoding at single synapses  
(Pfister et al. Nat. Neurosc. 2010)

3. Decoding with the GLM  
(with A. Kutschireiter)
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the amplitudes increase over a period of 10s of millise-
conds due to accumulation of the calcium required to
trigger vesicle release in the presynaptic terminal [1].
Though connections are typically classified as depressing
or facilitating, they may exhibit a mixture of both depend-
ing on the frequency content of the presynaptic action-
potential train.

These dynamics have been sucessfully modelled by an
extension of the [19] binomial model, featuring n con-
tacts, synaptic efficacy q, probability of release p to
include time constants of recovery from depression tD

and facilitation tF[72,2] allowing for the parameterization
of a broad range of dynamics [10] between different pairs
of cell classes. A number of elaborations of the basic
model have been proposed to capture further experimen-
tal features such as activity-dependent restock rates [25],
refractoriness of presynaptic release sites [53], and vesicle
pool dynamics [44]; see [29] for a recent review of
extended models.

Because synaptic dynamics are specific to pre and post-
synaptic cell pairs it allows differential signalling via the
same axon [43] as a presynaptic cell can make depressing
and facilitating synaptic contacts onto different postsyn-
aptic classes. Response to synchronous bursts of activity
in the neocortical layer-5 pyramidal-cell network can
produce peaks of activity that are separated by 100s of
milliseconds in their postysnaptic targets [66,61] due to
the decreasing or increasing response of depressing or
facilitating synapses, respectively.

Synaptic filtering has been assigned many computational
roles. Depression provides gain-control; during a steady,
high presynaptic rate r the fraction of vesicles available for
release is depleted and the charge delivered scales as 1/r
and so the mean synaptic current, which is charge times

152 Theoretical and computational neuroscience
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Computations by spatially extended neurons. a: Dendritic input/output transformations: sublinear (black), linear (brown), supralinear (red), bistable
(orange). b: Dendritic static multi-layer perceptron model. Each dendritic branch is modelled as a threshold non-linear device. c: Dynamic multi-layer
model (tree of LNPs, or LNLNP model).
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Current Opinion in Neurobiology

Filtering of afferents by synaptic dynamics. (a) Neocortical layer-5
pyramidal-cell depressing response to a presynaptic pyramidal cell (PC)
spike train and (b) Martinotti-interneuron (MI) facilitating response to a
presynaptic PC spike train. Experimental data (black; Silberberg et al,
2004) are compared with a model (green and red) of synaptic dynamics
(Tsodyks et al, 1997). Insets show amplitudes of successive EPSPs. (c)
Simultaneous intracellular voltage recordings (Silberberg et al, 2004) of a
PC and MI during a population burst in the PC population. Both cells
have been hyperpolarised to prevent postsynaptic firing and so reveal
the waveforms of the filtered synaptic drive. Note that the different short-
term plasticity results in a signficant delay between the peak responses.
(d) This subthreshold response can be captured by models of the
synaptic dynamics (Richardson et al, 2005) and predict that, in the
presence of a threshold, the MI population will fire with a relative delay to
the PC poplation (e-f).

Current Opinion in Neurobiology 2014, 25:149–155 www.sciencedirect.com


