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Computer vision problems

Vector space (Rd)

1 Supervised learning,
2 Unsupervised learning,
3 Indexing,
4 Search,
5 . . .
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Relation with images
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Relation with images

1 Features extraction
2 Features comparison

25% error rate in 2011
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Supervised learning

Learning
To learn is to generalize (6= memorize),

Supervised learning
Regression,
Requires an expert,
Has a lot of applications:

Playing games,
Pattern recognition,
Attending to a lesson... ?
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Supervised learning

Learning
To learn is to generalize (6= memorize),

Supervised learning
Regression,
Requires an expert,
Has a lot of applications:

Playing games,
Pattern recognition,
Attending to a lesson... ?

Classical methods: SVM, k-NN, Random Forests, LR, MLP, CNN. . .
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Unsupervised learning

Unsupervised learning
Partitioning,
Requires an oracle,
Many think this is the true
support of intelligence:

Efficient representations,
language,
Compression,
Automatic generation of
hypothesis. . .
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Unsupervised learning

Unsupervised learning
Partitioning,
Requires an oracle,
Many think this is the true
support of intelligence:

Efficient representations,
language,
Compression,
Automatic generation of
hypothesis. . .

Classical methods: k-means, db-scan, Kohonen maps, autoencoders,
EM. . .
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Indexing

Definition
Given a collection X ∈ Rd×n and a query vector x:
1 Is x ∈ X?
2 Do we have x′ ∈ X s.t. x′ ≈ x?

Exhaustive search
Pros: no error, simple, concurrent,
Cons: linear with both d and n.

Example of database: SIFT1B:
n = 1, 000, 000, 000,
d = 128,
10,000 tests,
On my laptop, takes approximatively 4 years.
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Methods

Hash tables (exact)
Store items in an array of lists,
Access array addresses using hash functions.

Bloom filters (approximate)
Retain already-seen hashes,
Compare with probed ones.

Locality Sensitive Hashing (LSH)
Use smooth hashes,
Convert Euclidean to Hamming.
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Search

Definition
Given a collection X ∈ Rd×n and a query vector x, find:

x′ = arg min
x′∈X

‖x− x′‖,

given some metric.

Methods
Exhaustive search again,
Act on n and/or d:

On n, partition the search space (problems with high dimensions),
On d, quantify the collection and/or the probe (e.g. Product
Quantization).
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Curse of dimensionality

“Intuition is wrong in high dimension.”

d = 1 d = 2 d = 3

100% ≈ 79% ≈ 52%

V s
d =

πd/2Rd

Γ(d/2 + 1)
versus V c

d = (2R)d
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A note on Neural Networks methods for vision

Definition
A neural network performs iteratively the concatenation of a linear and
a nonlinear function.

y = h1(W1(h2(W2 . . . hi(Wix)))).

Nonlinear functions
Sigmoids (e.g. x 7→ 1/ (1 + exp(−x))),
Relus (e.g. x 7→ max(0, x)),
Winner-Takes-All (WTA). . .
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Hopfield Neural Networks

Framework
x ∈ {−1, 1}d, X ⊂ {−1, 1}d×n,

Example:
Storing binary message
-11-111-1-11
Retrieve it from -11-111-1?1

W =
∑

x∈X xx> − diag(xx>) =
XX> − diag(XX>),
y = sgn(Wx) = u(x),
The update can be sequential (one
coordinate at a time),
U(x) , u(u(u(u(. . . u(x))))).

0

1

2

3

4

5

6

7
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Stability of stored vectors

Theorem [1]
Consider n = d

γ log(d) :
If γ > 6, then for d→∞, P[lim inf

d
{∩x∈X{U(x) = x}] = 1,

If γ > 4, then P[∩x{U(x) = x}]→ 1.

Memory efficiency(
d
2

)
connections with n+ 1 possible values each⇒ takes(

d
2

)
log2(n+ 1) bits without compression,

To be compared to the entropy of X ≈ nd (Why ≈?).
When patterns are stable, we obtain η ≤ 1

2 log(d) log2(n+1) .

[1] “Étude asymptotique d’un réseau neuronal: le modèle de mémoire associative de
Hopfield”, Franck Vermet
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Retrievability of stored vectors

Theorem [1]
Consider ρ ∈ [0, 1/2[ and n = (1− 2ρ)2 d

γ log(d) . x̃ is such that it contains
at most ρd symbols different from x, then:
If γ > 6, then P[lim infd{∩x{U(x̃) = x}] = 1,
If γ > 4, then P[∩x{U(x̃) = x}]→ 1.

Hamiltonian
The quantity H(x) = −1

d

∑d
i,j=1Wijxixj is nonincreasing with u.

More generally, U(x) is a local minimum for H.

[1] “Étude asymptotique d’un réseau neuronal: le modèle de mémoire associative de
Hopfield”, Franck Vermet
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Demonstration

1 Create network,
2 Test stability,
3 Test retrievability.
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Willshaw Neural Networks

Framework
x ∈ {0, 1}d, ‖x‖0 � d, X ⊂ {0, 1}d×n.

Example:
Storing binary message 01011001
Retrieve it from 010?10?1

W = maxx∈X xx> ∈ {0, 1}d×d
(= XX> for min-max-algebra),
y = WTA(Wx) = u(x),
The update can be sequential (one
coordinate at a time),
U(x) , u(u(u(u(. . . u(x))))).
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Stability of stored vectors

Theorem [2]
Consider X generated with ‖x‖0 = blog(d)/dc and x chosen at random
such that ‖x‖0 = blog(d)/dc. With n = αd2 log log(d)/ log2(d):
If α > 2, P[u(x) = x]→ 1,
If α = 2, ∃γ > 0, for d large enough, P[u(x) = x] ≥ γ,
If α < 2, P[u(x) = x]→ 0,

[2] “A Comparative Study of Sparse Associative Memories”, G. et al.
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Memory efficiency

Memory efficiency(
d
2

)
connections with 2 possible values each⇒ takes

(
d
2

)
bits

without compression,
To be compared to the entropy of X:

≈ ndH2(log(d)/d).

When patterns are stable, we obtain

η ≥ αd(log log(d))2

2 log(d)
→ +∞

Why?
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Retrievability of stored vectors

Theorem [2]
Consider n = αd2/ log2(d), ρ ∈ [0, 1[ such that bρ log(d)c of 1s in x are
erased to obtain x̃. Then:
If α < − log(1− exp(−1/(1− ρ))), then P[u(x̃) = x]→ 1,
If α > − log(1− exp(−1/(1− ρ))), then P[u(x̃) 6= x]→ 1.

[2] “A Comparative Study of Sparse Associative Memories”, G. et al.
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Demonstration

1 Create network,
2 Test stability,
3 Test retrievability.
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Outline

1 Computer Vision and Neural Networks

2 Hopfield Neural Networks

3 Willshaw Neural Networks

4 Conclusion
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Associative memories

Store

Black box
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Associative memories

Store

Black box

Some piece of
information
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Associative memories

Store

Black box
Another piece of
information
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Associative memories

Store

Black box

Storage capacity
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Associative memories

Retrieve

Black box

Storage capacity

Black box
Noisy version of
previously stored
piece of information
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Associative memories

Retrieve

Black box

Storage capacity

Black box
Noisy version of
previously stored
piece of information

Corresponding
previously stored
piece of information

Piece of information = message, retrieve = decode
associative memory = universal decoder
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Summary

Hopfield Willshaw

Framework x ∈ {−1, 1}d x ∈ {0, 1}d, ‖x‖0 � d

Memory xx> − diag(xx>) xx>

Aggregation W =
∑
x∈X

xx> − diag(xx>) W = max
x∈X

xx>

Search u(W · x̃) u(W ⊗ x̃)
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Conclusion/Take home message

Neural networks can do much more than learning,
Neural networks are not just big mathematical functions,
Storing and indexing boils down to Gram matrices and strange
algebras.

XKCD
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