Artificial Intelligence and Informational Neuroscience

Vincent Gripon

July 1st, 2017

Artificial Intelligence vs. Natural Intelligence

What is the color of a white horse?

3	15	10
8	40	35
6	30	?

$$\int_0^{\sqrt{3}} x^3 (1+x^2) dx$$

Artificial Intelligence vs. Natural Intelligence

Artificial Intelligence vs. Natural Intelligence

There is but one model to draw inspiration from : the brain.

$$\mathbf{y} = f\left(W_4 \cdot f\left(W_3 \cdot f\left(W_2 \cdot f\left(W_1 \cdot \mathbf{x}\right)\right)\right)\right)$$

$$\mathbf{y} = f\left(W_4 \cdot f\left(W_3 \cdot f\left(W_2 \cdot f\left(W_1 \cdot \mathbf{x}\right)\right)\right)\right)$$

$$\mathbf{y} = f\left(W_4 \cdot f\left(W_3 \cdot f\left(W_2 \cdot f\left(W_1 \cdot \mathbf{x}\right)\right)\right)\right)$$

$$\mathbf{y} = f\left(W_4 \cdot f\left(W_3 \cdot f\left(W_2 \cdot \frac{\mathbf{f}}{\mathbf{f}}\left(W_1 \cdot \mathbf{x}\right)\right)\right)\right)$$

$$\mathbf{y} = f\left(W_4 \cdot f\left(W_3 \cdot f\left(W_2 \cdot f\left(W_1 \cdot \mathbf{x}\right)\right)\right)\right)$$

$$\mathbf{y} = f\left(W_4 \cdot f\left(W_3 \cdot f\left(W_2 \cdot f\left(W_1 \cdot \mathbf{x}\right)\right)\right)\right)$$

$$\mathbf{y} = f\left(W_4 \cdot f\left(W_3 \cdot f\left(W_2 \cdot f\left(W_1 \cdot \mathbf{x}\right)\right)\right)\right)$$

$$\mathbf{y} = f\left(W_4 \cdot f\left(W_3 \cdot f\left(W_2 \cdot f\left(W_1 \cdot \mathbf{x}\right)\right)\right)\right)$$

$$\mathbf{y} = f\left(W_4 \cdot f\left(W_3 \cdot f\left(W_2 \cdot f\left(W_1 \cdot \mathbf{x}\right)\right)\right)\right)$$

$$\mathbf{y} = f\left(W_4 \cdot f\left(W_3 \cdot f\left(W_2 \cdot f\left(W_1 \cdot \mathbf{x}\right)\right)\right)\right)$$

Nonlinearities
$$\mathbf{y} = f(W_4 \cdot f(W_3 \cdot f(W_2 \cdot f(W_1 \cdot \mathbf{x}))))$$

$$\mathbf{y} = f\left(\underline{W_4} \cdot f\left(\underline{W_3} \cdot f\left(\underline{W_2} \cdot f\left(\underline{W_1} \cdot \mathbf{x}\right)\right)\right)\right)$$
Parameters

$$\mathbf{y} = f\left(W_4 \cdot f\left(W_3 \cdot f\left(W_2 \cdot f\left(W_1 \cdot \mathbf{x}\right)\right)\right)\right)$$

"How to grow a mind: statistics, structure, and abstraction", Science, 2011.

$$\mathbf{y} = f\left(W_4 \cdot f\left(W_3 \cdot f\left(W_2 \cdot f\left(W_1 \cdot \mathbf{x}\right)\right)\right)\right)$$

"Intriguing properties of neural networks", Arxiv research report, 2013.

[&]quot;How to grow a mind: statistics, structure, and abstraction", Science, 2011.

[&]quot;How to grow a mind: statistics, structure, and abstraction", Science, 2011. "Intriguing properties of neural networks", Arxiv research report, 2013.

Vincent Gripon (IMT-Atlantique)

Memory and computation

Should memory and computation be...

Schannon's model applied to the brain

To be or not to be That is the question

02 29 00 12 77

 $e^{i\pi} + 1 = 0$

Victor Hugo

To be or not to be That is the question

Alla Turca

1 neuron is lost each second

Connection weights are changing all the time)

Communications are noisy...

 $8 \times 7 = 56$

02 29 00 12 77

Victor Hugo

To? or not to be That is the?

1 neuron is lost each second

Connection weights are changing all the time

Communications are noisy...

02 29 00 ?2 77

?

To? or not to be That is the?

Long term memory is robust. and therefore redundant.

$$8 \times 7 = ?$$

02 29 00 ?2 77

- Aggregation of simple rules,
- Each rule covers several memory units,
- Each memory unit is covered by several rules,
- Can be decoded iteratively.

- Aggregation of simple rules,
- Each rule covers several memory units,
- Each memory unit is covered by several rules,
- Can be decoded iteratively.

- Aggregation of simple rules,
 - Each rule covers several memory units,
- Each memory unit is covered by several rules,
- Can be decoded iteratively.

- Aggregation of simple rules,
 - Each rule covers several memory units,
- Each memory unit is covered by several rules,
- Can be decoded iteratively.

- Aggregation of simple rules,
 - Each rule covers several memory units,
- Each memory unit is covered by several rules,
- Can be decoded iteratively.

- Aggregation of simple rules,
- Each rule covers several memory units,
- Each memory unit is covered by several rules,
- Can be decoded iteratively.

Rondo

Distributed code:

- Aggregation of simple rules,
- Each rule covers several memory units,
- Each memory unit is covered by several rules,
- Can be decoded iteratively.

Rondo

$$e^{i\pi}+1=0$$

Distributed code:

- Aggregation of simple rules,
- Each rule covers several memory units,
- Each memory unit is covered by several rules,
- Can be decoded iteratively.

All Free Rondo

 $e^{i\pi}+1=0$

Distributed code:

- Aggregation of simple rules,
 - Each rule covers several memory units,
- Each memory unit is covered by several rules,
- Can be decoded iteratively.

Rondo

$$e^{i\pi} + 1 = 0$$

- Aggregation of simple rules,
- Each rule covers several memory units,
- Each memory unit is covered by several rules,
- Can be decoded iteratively.

$$e^{i\pi} + 1 = 0$$

A distributed neural code

Distributed code:

- Aggregation of simple rules,
- Each rule covers several memory units,
- Each memory unit is covered by several rules,
- Can be decoded iteratively.

$$e^{i\pi} + 1 = 0$$

A distributed neural code

Distributed code:

- Aggregation of simple rules,
 - Each rule covers several memory units,
- Each memory unit is covered by several rules,
- Can be decoded iteratively.

In short : sparsity and competition

Scalability issues

Neural cliques to store mental information :

0000

- An exponentially large number of combinations (ℓ^c),
- Very strong redundancy $(\approx c)$,
- Almost optimal memory efficiency $(\eta \to \log(2))$,

0000

Competitive with state-of-the-art error correcting codes ($P_e = 1 - (1 - (1 - \frac{1}{\ell^2})^{c_i})^{(c-c_i)(\ell-1)}$).

Neural cliques to store mental information:

0000

- An exponentially large number of combinations (ℓ^c) ,
- Very strong redundancy $(\approx c)$,
- Almost optimal memory efficiency $(\eta \to \log(2))$,

0000

Competitive with state-of-the-art error correcting codes ($P_e = 1 - (1 - (1 - \frac{1}{\ell^2})^{c_i})^{(c-c_i)(\ell-1)}$).

Neural cliques to store mental information:

0000

- An exponentially large number of combinations (ℓ^c) ,
- Very strong redundancy $(\approx c)$,
- Almost optimal memory efficiency $(\eta \to \log(2))$,

0000

Competitive with state-of-the-art error correcting codes ($P_e = 1 - (1 - (1 - \frac{1}{\ell^2})^{c_i})^{(c-c_i)(\ell-1)}$)

Neural cliques to store mental information:

0000

- An exponentially large number of combinations (ℓ^c) ,
- Very strong redundancy $(\approx c)$,
- Almost optimal memory efficiency $(\eta \to \log(2))$,

0000

Competitive with state-of-the-art error correcting codes $(P_e = 1 - (1 - (1 - \frac{1}{\ell^2})^{c_i})^{(c-c_i)(\ell-1)})$.

Neural cliques to store mental information:

- An exponentially large number of combinations (ℓ^c) ,
- Very strong redundancy $(\approx c)$,
- Almost optimal memory efficiency ($\eta \to \log(2)$),
- Competitive with state-of-the-art error correcting codes ($P_e=1-(1-(1-\frac{1}{\ell^2})^{c_i})^{(c-c_i)(\ell-1)}$).

0000

- Clique with c vertices
 - c vertices,
 - $\lceil c/2 \rceil$ connections are enough,
 - c(c-1)/2 total connections,
 - Minimum Hamming distance is 2(c-1)

 \bigcirc

`

Clique with c vertices

- c vertices,
- $\lceil c/2 \rceil$ connections are enough,
- c(c-1)/2 total connections,
- Minimum Hamming distance is 2(c-1)

Clique with c vertices

- c vertices,
- $\lceil c/2 \rceil$ connections are enough,
- c(c-1)/2 total connections,
- Minimum Hamming distance is 2(c-1).

Clique with c vertices

- c vertices,
- $\lceil c/2 \rceil$ connections are enough,
- c(c-1)/2 total connections,
- Minimum Hamming distance is 2(c-1).

Approaching log(2)

- Let us choose : $\alpha c = 2\log_2(\ell)$,
- \bullet $\eta \sim \frac{Mc \log_2(\ell)}{\binom{c}{2}\ell^2} \sim \frac{\alpha M}{\ell^2}$,
- Probability a given connection exists (i.i.d. uniform messages) : $d=1-(1-\ell^{-2})^M\Rightarrow M\sim -\ell^2\log(1-d)$,
- Probability to accept a random message : $P_e \approx d^{\binom{r}{2}}$, none of them : $P_e^* \leq P_e \ell^c$,
 - $P_e^* \leq \exp\left(\frac{c^2}{2}\left[\log_2(d) + \alpha\right]\right) \to 0 \text{ if } \alpha = -\beta\log_2(d), \beta < 1$
- Conclusion : $\eta \sim \beta \log_2(1-d) \log_2(d) \log(2)$

Approaching $\log(2)$

- Let us choose : $\alpha c = 2\log_2(\ell)$,
- $ullet \ \eta \sim rac{Mc\log_2(\ell)}{{r\choose 2}\ell^2} \sim rac{lpha M}{\ell^2}$,
- Probability a given connection exists (i.i.d. uniform messages) : $d=1-(1-\ell^{-2})^M\Rightarrow M\sim -\ell^2\log(1-d)$,
- Probability to accept a random message : $P_e \approx d^{\binom{c}{2}}$, none of them : $P_e^* \leq P_e \ell^c$,
 - $P_e^* \leq \exp\left(\frac{c^2}{2}\left[\log_2(d) + \alpha\right]\right) \to 0 \text{ if } \alpha = -\beta\log_2(d), \beta < 1$
- Conclusion : $\eta \sim \beta \log_2(1-d) \log_2(d) \log(2)$

Approaching $\log(2)$

- Let us choose : $\alpha c = 2\log_2(\ell)$,
- \bullet $\eta \sim rac{Mc \log_2(\ell)}{\binom{c}{2}\ell^2} \sim rac{lpha M}{\ell^2}$,
- Probability a given connection exists (i.i.d. uniform messages) : $d=1-(1-\ell^{-2})^M\Rightarrow M\sim -\ell^2\log(1-d)$,
- Probability to accept a random message : $P_e \approx d^{\binom{r}{2}}$, none of them : $P_e^* \leq P_e \ell^c$,
 - $P_e^* \leq \exp\left(\frac{c^2}{2}\left[\log_2(d) + \alpha\right]\right) \to 0 \text{ if } \alpha = -\beta\log_2(d), \beta < 1$
- Conclusion : $\eta \sim \beta \log_2(1-d) \log_2(d) \log(2)$

Approaching $\log(2)$

- Let us choose : $\alpha c = 2\log_2(\ell)$,
- $ullet \ \eta \sim rac{Mc\log_2(\ell)}{{c\choose 2}\ell^2} \sim rac{lpha M}{\ell^2}$,
- Probability a given connection exists (i.i.d. uniform messages) : $d=1-(1-\ell^{-2})^M\Rightarrow M\sim -\ell^2\log(1-d)$,
- Probability to accept a random message : $P_e \approx d^{\binom{c}{2}}$, none of them : $P_e^* \leq P_e \ell^c$,

•
$$P_e^* \leq \exp\left(\frac{c^2}{2}\left[\log_2(d) + \alpha\right]\right) \to 0 \text{ if } \alpha = -\beta\log_2(d), \beta < 1.$$

• Conclusion : $\eta \sim \beta \log_2(1-d) \log_2(d) \log(2)$

Approaching $\log(2)$

- Let us choose : $\alpha c = 2\log_2(\ell)$,
- $ullet \ \eta \sim rac{Mc\log_2(\ell)}{{c\choose 2}\ell^2} \sim rac{lpha M}{\ell^2}$,
- Probability a given connection exists (i.i.d. uniform messages) : $d=1-(1-\ell^{-2})^M\Rightarrow M\sim -\ell^2\log(1-d)$,
- Probability to accept a random message : $P_e \approx d^{\binom{c}{2}}$, none of them : $P_e^* \leq P_e \ell^c$,
 - $P_e^* \leq \exp\left(\frac{c^2}{2}\left[\log_2(d) + \alpha\right]\right) \to 0 \text{ if } \alpha = -\beta\log_2(d), \beta < 1.$
- Conclusion : $\eta \sim \beta \log_2(1-d) \log_2(d) \log(2)$

Approaching $\log(2)$

- Let us choose : $\alpha c = 2\log_2(\ell)$,
- $ullet \ \eta \sim rac{Mc\log_2(\ell)}{{c\choose 2}\ell^2} \sim rac{lpha M}{\ell^2}$,
- Probability a given connection exists (i.i.d. uniform messages) : $d=1-(1-\ell^{-2})^M\Rightarrow M\sim -\ell^2\log(1-d)$,
- Probability to accept a random message : $P_e \approx d^{\binom{c}{2}}$, none of them : $P_e^* \leq P_e \ell^c$,
 - $P_e^* \leq \exp\left(\frac{c^2}{2}\left[\log_2(d) + \alpha\right]\right) \to 0 \text{ if } \alpha = -\beta\log_2(d), \beta < 1.$
- Conclusion : $\eta \sim \beta \log_2(1-d) \log_2(d) \log(2)$

Asymptotic behavior

Storage diversity

Theorem : consider $M = \alpha \log(c)\ell^2$, with $\log(c) = \log(\log(\ell))$, then :

- \bullet For $\alpha>2$, random messages are accepted with probability that goes to 1,
- For $\alpha=2$, probability is strictly positive,
- For $\alpha < 2$, probability goes to 0.

Stability and error correction

Theorem : Consider $M=\alpha\ell^2/c^2$ messages. Deactivate ρc initial neurons, then for $\alpha<-\log(1-\exp(-1/(1-\rho)))$, probability to retrieve the message goes to 1.

[&]quot;A comparative study of sparse associative memories," Jour. Stat. Phys.

Asymptotic behavior

Storage diversity

Theorem : consider $M = \alpha \log(c)\ell^2$, with $\log(c) = \log(\log(\ell))$, then :

- \bullet For $\alpha>2$, random messages are accepted with probability that goes to 1,
- For $\alpha = 2$, probability is strictly positive,
- For $\alpha < 2$, probability goes to 0.

Stability and error correction

Theorem : Consider $M=\alpha\ell^2/c^2$ messages. Deactivate ρc initial neurons, then for $\alpha<-\log(1-\exp(-1/(1-\rho)))$, probability to retrieve the message goes to 1.

[&]quot;A comparative study of sparse associative memories," Jour. Stat. Phys.

Experiments

False positive rate for various number of clusters c and $\ell=512$ units per cluster.

With 1% of error, efficiency is 137.1%

Performance (error correction)

Amari Willshaw No structure No structure Weights No weights 0.8 Taux d'erreur 0.6 0.4Amari Willshaw 0.2Proposé (SOM) $10000\ 20000\ 30000\ 40000\ 50000$

Proposed model

- Clusters
- No weights

- 2048 units total,
- 8 units per message,
- 4 initially activated units,
- $(\ell = 256)$,
- $\eta \approx 50\%$.

[&]quot;A comparative study of sparse associative memories," Jour. Stat. Phys.

Robustness towards noise

c=8 clusters with $\ell=256$ units each (\sim 64 bits of information per message), Messages are retrieved from half-erased versions.

"Fault-Tolerant Associative Memories Based on c-Partite Graphs," IEEE T.S.P.

Binary models vs. continous models

Continuous models

- Information is carried out by weights,
- Learning performance is great,
- "Connection weights exhibit a heavy-tailed lognormal distribution spanning five orders of magnitude" [2].
- External world is continuous.

Binary models

- Information is carried out by existence of connections,
- Storing performance is great,
- "The probability that a synapse fails to release neurotransmitter in response to an incoming signal is remarkably high, between 0.5 and 0.9" [1].
- Language is discrete.

 $[\]label{eq:communication} \mbox{[1] "Communication in neuronal networks", Science, 2003.}$

^{[2] &}quot;A Predictive Network Model of Cerebral Cortical Connectivity Based on a Distance Rule", Neuron, 2013.

Complementarity learning/storing

Complementarity learning/storing

	Proposed	Other techniques	
	method	1-NN	5-NN
Accuracy(%)	82	82.6(82)	86.07 (83)
complexity- ℓ	negligible	$\geq 2 \cdot 10^{10}$	$\geq 2 \cdot 10^{10}$
complexity-p	$4.1\cdot 10^5$	$3.2 \cdot 10^6$	$3.2 \cdot 10^{6}$
Memory usage-ℓ	$1.3\cdot 10^7$	$3.7\cdot 10^7$	$3.7 \cdot 10^7$
Memory usage-p	$1.3\cdot 10^7$	$3.7\cdot 10^7$	$3.7 \cdot 10^7$

Table – Accuracy, complexity and memory usage ratio of I-I approach (P=64, K=200 and R=1) compared to λ -NN search using PQ (K=200, P=64) for Cifar10. Numbers between brackets accounts for product random sampling instead of PQ.

