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Artificial Intelligence vs. Natural Intelligence

What is the color of a white horse?

∫ √3
0

x3(1 + x2)dx
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Artificial Intelligence vs. Natural Intelligence

There is but one model to draw inspiration from : the brain.
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Denotational models

Input x Output y

y = f (W4 · f (W3 · f (W2 · f (W1 · x))))
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Denotational models

Input x Output y

y = f (W4 · f (W3 · f (W2 · f (W1 · x))))

Nonlinearities

Vincent Gripon (IMT-Atlantique) Mental Information Theory July 1st, 2017 3 / 18



Denotational models

Input x Output y

y = f (W4 · f (W3 · f (W2 · f (W1 · x))))

Parameters
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Denotational models

Input x Output y

y = f (W4 · f (W3 · f (W2 · f (W1 · x))))

“How to grow a mind : statistics, structure, and abstraction”, Science, 2011.
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Denotational models

Input x Output y
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“How to grow a mind : statistics, structure, and abstraction”, Science, 2011.
“Intriguing properties of neural networks”, Arxiv research report, 2013.
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Memory and computation

Should memory and computation be. . .

Separated. . . or inextricably bound?

Memory

Processing unit

Control unit
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Schannon’s model applied to the brain

Perception Memory

External world
rich and exuberant

Source
coding
Removal of
natural
redundancy

Addition of
artificial
redundancy

Channel
coding

Mental information,
sparse and
robust
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The mystery of mental information storing
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The mystery of mental information storing

To be or not to be
That is the question

Victor Hugo

eiπ + 1 = 0

8× 7 = 56

02 29 00 12 77
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The mystery of mental information storing

To be or not to be
That is the question

Victor Hugo

eiπ + 1 = 0

8× 7 = 56

02 29 00 12 77

1 neuron is lost each second
Connection weights are changing all the time

Communications are noisy. . .
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The mystery of mental information storing

To? or not to be
That is the?

?

e?π + 1 =?

8× 7 =?

02 29 00?2 77

1 neuron is lost each second
Connection weights are changing all the time

Communications are noisy. . .
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The mystery of mental information storing

To? or not to be
That is the?

?

e?π + 1 =?

8× 7 =?

02 29 00?2 77

1 neuron is lost each second
Connection weights are changing all the time

Communications are noisy. . .

Long term memory is robust. . ....
and therefore redundant.
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A distributed neural code

Distributed code :
1 Aggregation of simple rules,
2 Each rule covers several memory
units,

3 Each memory unit is covered by
several rules,

4 Can be decoded iteratively.
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A distributed neural code

Distributed code :
1 Aggregation of simple rules,
2 Each rule covers several memory
units,

3 Each memory unit is covered by
several rules,

4 Can be decoded iteratively.

eiπ + 1 = 0In short : sparsity and competition
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Scalability issues
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Hebb’s natural error correcting redundancy

` units

c clusters
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Hebb’s natural error correcting redundancy

` units

c clusters

Neural cliques to store men-
tal information :
An exponentially large
number of combinations (`c),
Very strong redundancy
(≈ c),
Almost optimal memory
efficiency (η → log(2)),
Competitive with
state-of-the-art error
correcting codes (Pe =
1− (1− (1− 1

`2
)ci)(c−ci)(`−1)).
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A powerful graphical error correcting code

Clique with c vertices
c vertices,
dc/2e connections are
enough,
c(c− 1)/2 total
connections,
Minimum Hamming
distance is 2(c− 1).
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Memory efficiency (with some approximations)

Approaching log(2)
Let us choose : αc = 2 log2(`),
η ∼ Mc log2(`)

(c2)`2
∼ αM

`2
,

Probability a given connection exists (i.i.d. uniform messages) :
d = 1− (1− `−2)M ⇒M ∼ −`2 log(1− d),

Probability to accept a random message : Pe ≈ d(
c
2), none of

them : P ∗e ≤ Pe`c,

P ∗e ≤
+∞

exp

(
c2

2
[log2(d) + α]

)
→ 0 if α = −β log2(d), β < 1.

Conclusion : η ∼ β log2(1− d) log2(d) log(2)
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Asymptotic behavior

Storage diversity
Theorem : considerM = α log(c)`2, with log(c) = log(log(`)), then :
For α > 2, random messages are accepted with probability that
goes to 1,
For α = 2, probability is strictly positive,
For α < 2, probability goes to 0.

Stability and error correction
Theorem : ConsiderM = α`2/c2 messages. Deactivate ρc initial
neurons, then for α < − log(1− exp(−1/(1− ρ))), probability to
retrieve the message goes to 1.

“A comparative study of sparse associative memories,” Jour. Stat. Phys.
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Experiments
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False positive rate for
various number of clusters
c and ` = 512 units per
cluster.

With 1% of error, efficiency is 137.1%
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Performance (error correction)

Amari
No structure
Weights

Willshaw
No structure
No weights

Proposed model
Clusters
No weights
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Proposé

Proposé (SOM)

2048 units total,
8 units per message,
4 initially activated
units,
(` = 256),
η ≈ 50%.

“A comparative study of sparse associative memories,” Jour. Stat. Phys.
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Robustness towards noise

ψ

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

η
*

0

0.1
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0.3

0.4
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0.7

0.8

BSC capacity × 0.765

η* (c=16, 4 iter)

c = 8 clusters with ` = 256
units each (∼ 64 bits of
information per message),
Messages are retrieved
from half-erased versions.

“Fault-Tolerant Associative Memories Based on c-Partite Graphs,” IEEE T.S.P.
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Binary models vs. continous models

Continuous models
Information is carried out by
weights,
Learning performance is
great,
“Connection weights exhibit
a heavy-tailed lognormal
distribution spanning five
orders of magnitude” [2].
External world is continuous.

Binary models
Information is carried out by
existence of connections,
Storing performance is great,
“The probability that a
synapse fails to release
neurotransmitter in response
to an incoming signal is
remarkably high, between
0.5 and 0.9” [1].
Language is discrete.

[1] “Communication in neuronal networks”, Science, 2003.
[2] “A Predictive Network Model of Cerebral Cortical Connectivity Based on a Distance Rule”, Neuron, 2013.
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Complementarity learning/storing

Input
Signal
sm

Input
Label
cm

Pre-trained
CNN

Hidden Layer
Output
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xm
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Complementarity learning/storing

Proposed Other techniques
method 1-NN 5-NN

Accuracy(%) 82 82.6(82) 86.07(83)

complexity-` negligible ≥ 2 · 1010 ≥ 2 · 1010

complexity-p 4.1 · 105 3.2 · 106 3.2 · 106

Memory usage-` 1.3 · 107 3.7 · 107 3.7 · 107

Memory usage-p 1.3 · 107 3.7 · 107 3.7 · 107

TABLE – Accuracy, complexity and memory usage ratio of I-I approach
(P = 64,K = 200 and R = 1) compared to λ-NN search using PQ (K = 200,
P = 64) for Cifar10. Numbers between brackets accounts for product
random sampling instead of PQ.
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Informational Neurosciences

Neurosciences
and Neural
Networks

Information
theory

Error
correcting
codes

Data
structures

Signal
processing

Machine
learning

Cognitive
sciences

Discrete
maths

Continuous
maths

Statistics

Symbols

Informational
Neurosciences
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