# Artificial Intelligence and Informational Neuroscience

### Vincent Gripon







July 1st, 2017

### Artificial Intelligence vs. Natural Intelligence



What is the color of a white horse?

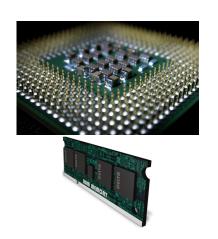
| 3 | 15 | 10 |
|---|----|----|
| 8 | 40 | 35 |
| 6 | 30 | ?  |

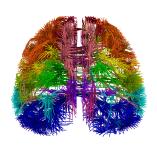


$$\int_0^{\sqrt{3}} x^3 (1+x^2) dx$$

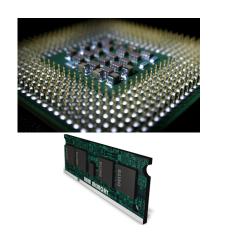


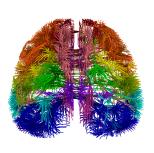
### Artificial Intelligence vs. Natural Intelligence



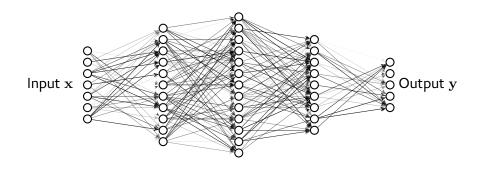


### Artificial Intelligence vs. Natural Intelligence

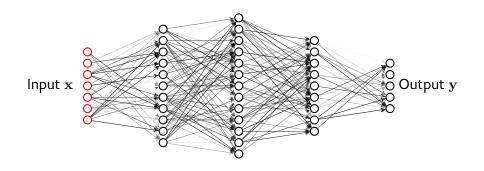




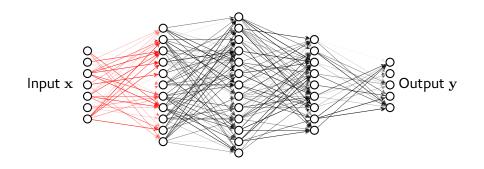
There is but one model to draw inspiration from : the brain.



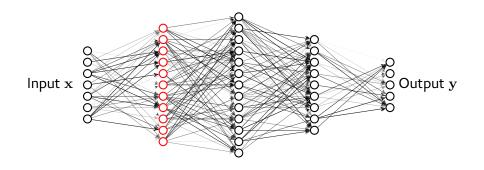
$$\mathbf{y} = f\left(W_4 \cdot f\left(W_3 \cdot f\left(W_2 \cdot f\left(W_1 \cdot \mathbf{x}\right)\right)\right)\right)$$



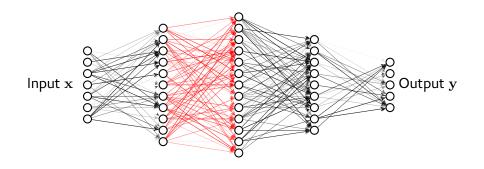
$$\mathbf{y} = f\left(W_4 \cdot f\left(W_3 \cdot f\left(W_2 \cdot f\left(W_1 \cdot \mathbf{x}\right)\right)\right)\right)$$



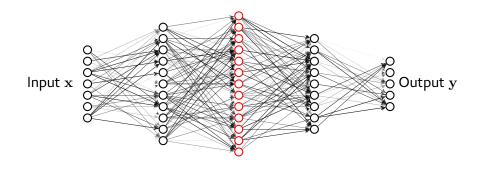
$$\mathbf{y} = f\left(W_4 \cdot f\left(W_3 \cdot f\left(W_2 \cdot f\left(W_1 \cdot \mathbf{x}\right)\right)\right)\right)$$



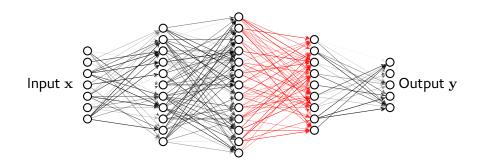
$$\mathbf{y} = f\left(W_4 \cdot f\left(W_3 \cdot f\left(W_2 \cdot \frac{\mathbf{f}}{\mathbf{f}}\left(W_1 \cdot \mathbf{x}\right)\right)\right)\right)$$



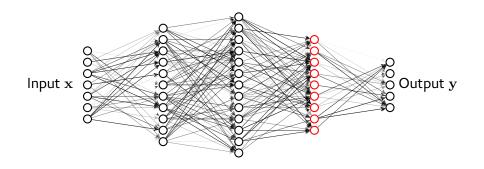
$$\mathbf{y} = f\left(W_4 \cdot f\left(W_3 \cdot f\left(W_2 \cdot f\left(W_1 \cdot \mathbf{x}\right)\right)\right)\right)$$



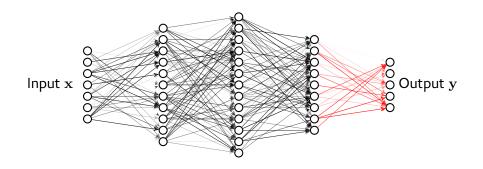
$$\mathbf{y} = f\left(W_4 \cdot f\left(W_3 \cdot f\left(W_2 \cdot f\left(W_1 \cdot \mathbf{x}\right)\right)\right)\right)$$



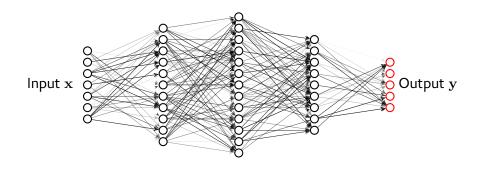
$$\mathbf{y} = f\left(W_4 \cdot f\left(W_3 \cdot f\left(W_2 \cdot f\left(W_1 \cdot \mathbf{x}\right)\right)\right)\right)$$



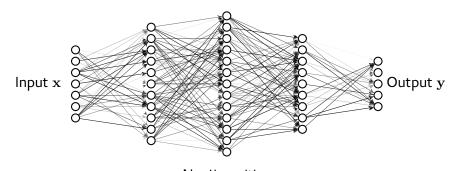
$$\mathbf{y} = f\left(W_4 \cdot f\left(W_3 \cdot f\left(W_2 \cdot f\left(W_1 \cdot \mathbf{x}\right)\right)\right)\right)$$



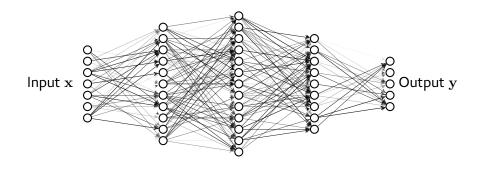
$$\mathbf{y} = f\left(W_4 \cdot f\left(W_3 \cdot f\left(W_2 \cdot f\left(W_1 \cdot \mathbf{x}\right)\right)\right)\right)$$



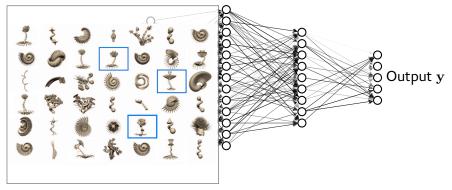
$$\mathbf{y} = f\left(W_4 \cdot f\left(W_3 \cdot f\left(W_2 \cdot f\left(W_1 \cdot \mathbf{x}\right)\right)\right)\right)$$



Nonlinearities 
$$\mathbf{y} = f(W_4 \cdot f(W_3 \cdot f(W_2 \cdot f(W_1 \cdot \mathbf{x}))))$$



$$\mathbf{y} = f\left(\underline{W_4} \cdot f\left(\underline{W_3} \cdot f\left(\underline{W_2} \cdot f\left(\underline{W_1} \cdot \mathbf{x}\right)\right)\right)\right)$$
Parameters



$$\mathbf{y} = f\left(W_4 \cdot f\left(W_3 \cdot f\left(W_2 \cdot f\left(W_1 \cdot \mathbf{x}\right)\right)\right)\right)$$

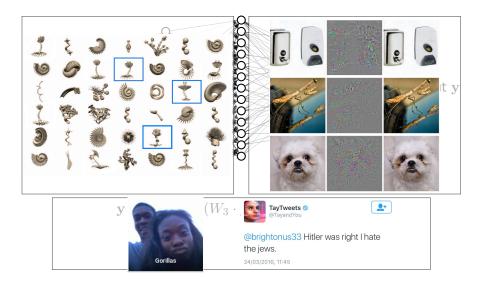
"How to grow a mind: statistics, structure, and abstraction", Science, 2011.



$$\mathbf{y} = f\left(W_4 \cdot f\left(W_3 \cdot f\left(W_2 \cdot f\left(W_1 \cdot \mathbf{x}\right)\right)\right)\right)$$

"Intriguing properties of neural networks", Arxiv research report, 2013.

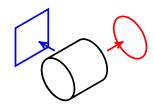
<sup>&</sup>quot;How to grow a mind: statistics, structure, and abstraction", Science, 2011.



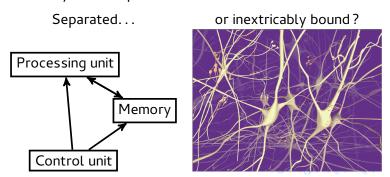
<sup>&</sup>quot;How to grow a mind: statistics, structure, and abstraction", Science, 2011. "Intriguing properties of neural networks", Arxiv research report, 2013.

Vincent Gripon (IMT-Atlantique)

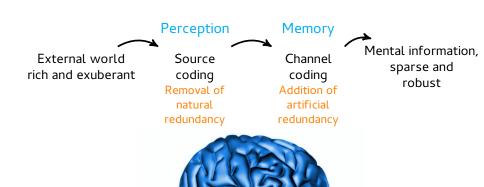
### Memory and computation



Should memory and computation be...



### Schannon's model applied to the brain





## To be or not to be That is the question



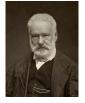




02 29 00 12 77



 $e^{i\pi} + 1 = 0$ 



Victor Hugo

To be or not to be That is the question



Alla Turca

1 neuron is lost each second

Connection weights are changing all the time )

Communications are noisy...

 $8 \times 7 = 56$ 

02 29 00 12 77



Victor Hugo

To? or not to be That is the?





1 neuron is lost each second

Connection weights are changing all the time

Communications are noisy...



02 29 00 ?2 77



?

To? or not to be That is the?



Long term memory is robust. and therefore redundant.

$$8 \times 7 = ?$$

02 29 00 ?2 77

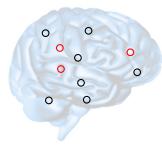




- Aggregation of simple rules,
- Each rule covers several memory units,
- Each memory unit is covered by several rules,
- Can be decoded iteratively.

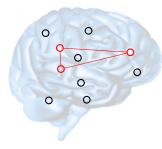


- Aggregation of simple rules,
- Each rule covers several memory units,
- Each memory unit is covered by several rules,
- Can be decoded iteratively.



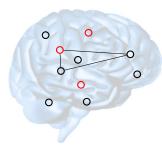
- Aggregation of simple rules,
  - Each rule covers several memory units,
- Each memory unit is covered by several rules,
- Can be decoded iteratively.





- Aggregation of simple rules,
  - Each rule covers several memory units,
- Each memory unit is covered by several rules,
- Can be decoded iteratively.

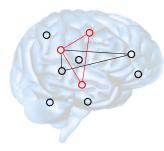




- Aggregation of simple rules,
  - Each rule covers several memory units,
- Each memory unit is covered by several rules,
- Can be decoded iteratively.



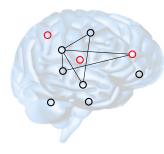




- Aggregation of simple rules,
- Each rule covers several memory units,
- Each memory unit is covered by several rules,
- Can be decoded iteratively.



Rondo



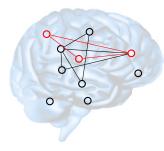
#### Distributed code:

- Aggregation of simple rules,
- Each rule covers several memory units,
- Each memory unit is covered by several rules,
- Can be decoded iteratively.

Rondo



$$e^{i\pi}+1=0$$



#### Distributed code:

- Aggregation of simple rules,
- Each rule covers several memory units,
- Each memory unit is covered by several rules,
- Can be decoded iteratively.

All Free Rondo



 $e^{i\pi}+1=0$ 



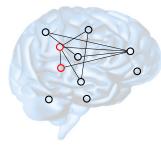
#### Distributed code:

- Aggregation of simple rules,
  - Each rule covers several memory units,
- Each memory unit is covered by several rules,
- Can be decoded iteratively.

Rondo



$$e^{i\pi} + 1 = 0$$



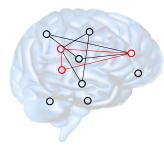
- Aggregation of simple rules,
- Each rule covers several memory units,
- Each memory unit is covered by several rules,
- Can be decoded iteratively.





$$e^{i\pi} + 1 = 0$$

#### A distributed neural code



#### Distributed code:

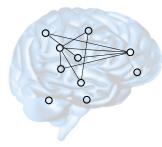
- Aggregation of simple rules,
- Each rule covers several memory units,
- Each memory unit is covered by several rules,
- Can be decoded iteratively.





$$e^{i\pi} + 1 = 0$$

#### A distributed neural code

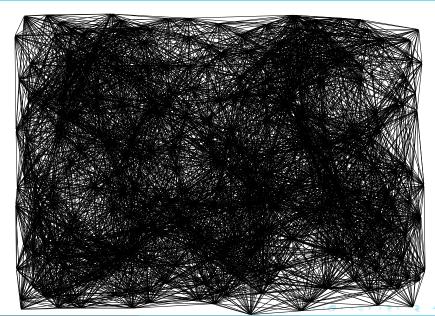


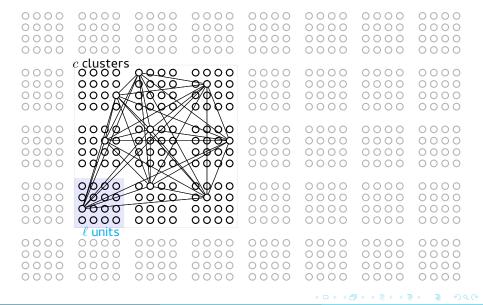
#### Distributed code:

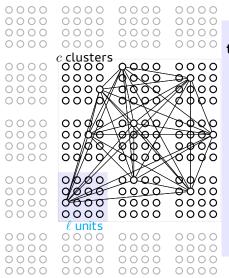
- Aggregation of simple rules,
  - Each rule covers several memory units,
- Each memory unit is covered by several rules,
- Can be decoded iteratively.

In short : sparsity and competition

## Scalability issues







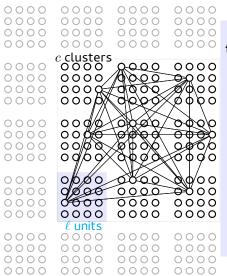
#### Neural cliques to store mental information :

0000

- An exponentially large number of combinations ( $\ell^c$ ),
- Very strong redundancy  $(\approx c)$ ,
- Almost optimal memory efficiency  $(\eta \to \log(2))$ ,

0000

Competitive with state-of-the-art error correcting codes ( $P_e = 1 - (1 - (1 - \frac{1}{\ell^2})^{c_i})^{(c-c_i)(\ell-1)}$ ).



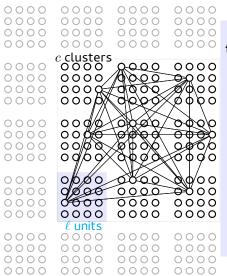
# Neural cliques to store mental information:

0000

- An exponentially large number of combinations  $(\ell^c)$ ,
- Very strong redundancy  $(\approx c)$ ,
- Almost optimal memory efficiency  $(\eta \to \log(2))$ ,

0000

Competitive with state-of-the-art error correcting codes ( $P_e = 1 - (1 - (1 - \frac{1}{\ell^2})^{c_i})^{(c-c_i)(\ell-1)}$ ).



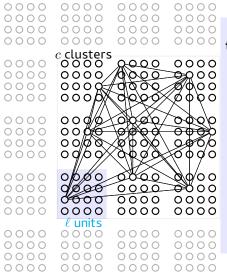
# Neural cliques to store mental information:

0000

- An exponentially large number of combinations  $(\ell^c)$ ,
- Very strong redundancy  $(\approx c)$ ,
- Almost optimal memory efficiency  $(\eta \to \log(2))$ ,

0000

Competitive with state-of-the-art error correcting codes ( $P_e = 1 - (1 - (1 - \frac{1}{\ell^2})^{c_i})^{(c-c_i)(\ell-1)}$ )



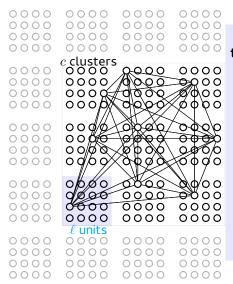
# Neural cliques to store mental information:

0000

- An exponentially large number of combinations  $(\ell^c)$ ,
- Very strong redundancy  $(\approx c)$ ,
- Almost optimal memory efficiency  $(\eta \to \log(2))$ ,

0000

Competitive with state-of-the-art error correcting codes  $(P_e = 1 - (1 - (1 - \frac{1}{\ell^2})^{c_i})^{(c-c_i)(\ell-1)})$ .



# Neural cliques to store mental information:

- An exponentially large number of combinations  $(\ell^c)$ ,
- Very strong redundancy  $(\approx c)$ ,
- Almost optimal memory efficiency ( $\eta \to \log(2)$ ),
- Competitive with state-of-the-art error correcting codes ( $P_e=1-(1-(1-\frac{1}{\ell^2})^{c_i})^{(c-c_i)(\ell-1)}$ ).

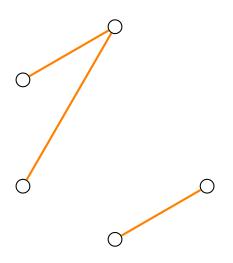
0000

- Clique with c vertices
  - c vertices,
    - $\lceil c/2 \rceil$  connections are enough,
  - c(c-1)/2 total connections,
  - Minimum Hamming distance is 2(c-1)

 $\bigcirc$ 

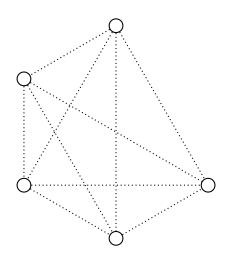
`





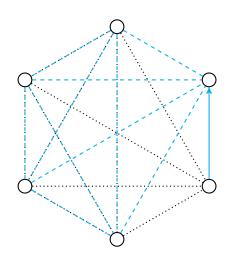
## Clique with c vertices

- c vertices,
- $\lceil c/2 \rceil$  connections are enough,
- c(c-1)/2 total connections,
- Minimum Hamming distance is 2(c-1)



#### Clique with c vertices

- c vertices,
- $\lceil c/2 \rceil$  connections are enough,
- c(c-1)/2 total connections,
- Minimum Hamming distance is 2(c-1).



#### Clique with c vertices

- c vertices,
- $\lceil c/2 \rceil$  connections are enough,
- c(c-1)/2 total connections,
- Minimum Hamming distance is 2(c-1).

## Approaching log(2)

- Let us choose :  $\alpha c = 2\log_2(\ell)$  ,
- $\bullet$   $\eta \sim \frac{Mc \log_2(\ell)}{\binom{c}{2}\ell^2} \sim \frac{\alpha M}{\ell^2}$ ,
- Probability a given connection exists (i.i.d. uniform messages) :  $d=1-(1-\ell^{-2})^M\Rightarrow M\sim -\ell^2\log(1-d)$ ,
- Probability to accept a random message :  $P_e \approx d^{\binom{r}{2}}$ , none of them :  $P_e^* \leq P_e \ell^c$ ,
  - $P_e^* \leq \exp\left(\frac{c^2}{2}\left[\log_2(d) + \alpha\right]\right) \to 0 \text{ if } \alpha = -\beta\log_2(d), \beta < 1$
- Conclusion :  $\eta \sim \beta \log_2(1-d) \log_2(d) \log(2)$

#### Approaching $\log(2)$

- Let us choose :  $\alpha c = 2\log_2(\ell)$ ,
- $ullet \ \eta \sim rac{Mc\log_2(\ell)}{{r\choose 2}\ell^2} \sim rac{lpha M}{\ell^2}$  ,
- Probability a given connection exists (i.i.d. uniform messages) :  $d=1-(1-\ell^{-2})^M\Rightarrow M\sim -\ell^2\log(1-d)$ ,
- Probability to accept a random message :  $P_e \approx d^{\binom{c}{2}}$ , none of them :  $P_e^* \leq P_e \ell^c$ ,
  - $P_e^* \leq \exp\left(\frac{c^2}{2}\left[\log_2(d) + \alpha\right]\right) \to 0 \text{ if } \alpha = -\beta\log_2(d), \beta < 1$
- Conclusion :  $\eta \sim \beta \log_2(1-d) \log_2(d) \log(2)$

#### Approaching $\log(2)$

- Let us choose :  $\alpha c = 2\log_2(\ell)$ ,
- $\bullet$   $\eta \sim rac{Mc \log_2(\ell)}{\binom{c}{2}\ell^2} \sim rac{lpha M}{\ell^2}$  ,
- Probability a given connection exists (i.i.d. uniform messages) :  $d=1-(1-\ell^{-2})^M\Rightarrow M\sim -\ell^2\log(1-d)$ ,
- Probability to accept a random message :  $P_e \approx d^{\binom{r}{2}}$ , none of them :  $P_e^* \leq P_e \ell^c$ ,
  - $P_e^* \leq \exp\left(\frac{c^2}{2}\left[\log_2(d) + \alpha\right]\right) \to 0 \text{ if } \alpha = -\beta\log_2(d), \beta < 1$
- Conclusion :  $\eta \sim \beta \log_2(1-d) \log_2(d) \log(2)$

#### Approaching $\log(2)$

- Let us choose :  $\alpha c = 2\log_2(\ell)$ ,
- $ullet \ \eta \sim rac{Mc\log_2(\ell)}{{c\choose 2}\ell^2} \sim rac{lpha M}{\ell^2}$  ,
- Probability a given connection exists (i.i.d. uniform messages) :  $d=1-(1-\ell^{-2})^M\Rightarrow M\sim -\ell^2\log(1-d)$ ,
- Probability to accept a random message :  $P_e \approx d^{\binom{c}{2}}$ , none of them :  $P_e^* \leq P_e \ell^c$ ,

• 
$$P_e^* \leq \exp\left(\frac{c^2}{2}\left[\log_2(d) + \alpha\right]\right) \to 0 \text{ if } \alpha = -\beta\log_2(d), \beta < 1.$$

• Conclusion :  $\eta \sim \beta \log_2(1-d) \log_2(d) \log(2)$ 

#### Approaching $\log(2)$

- Let us choose :  $\alpha c = 2\log_2(\ell)$ ,
- $ullet \ \eta \sim rac{Mc\log_2(\ell)}{{c\choose 2}\ell^2} \sim rac{lpha M}{\ell^2}$  ,
- Probability a given connection exists (i.i.d. uniform messages) :  $d=1-(1-\ell^{-2})^M\Rightarrow M\sim -\ell^2\log(1-d)$ ,
- Probability to accept a random message :  $P_e \approx d^{\binom{c}{2}}$ , none of them :  $P_e^* \leq P_e \ell^c$ ,
  - $P_e^* \leq \exp\left(\frac{c^2}{2}\left[\log_2(d) + \alpha\right]\right) \to 0 \text{ if } \alpha = -\beta\log_2(d), \beta < 1.$
- Conclusion :  $\eta \sim \beta \log_2(1-d) \log_2(d) \log(2)$

#### Approaching $\log(2)$

- Let us choose :  $\alpha c = 2\log_2(\ell)$ ,
- $ullet \ \eta \sim rac{Mc\log_2(\ell)}{{c\choose 2}\ell^2} \sim rac{lpha M}{\ell^2}$  ,
- Probability a given connection exists (i.i.d. uniform messages) :  $d=1-(1-\ell^{-2})^M\Rightarrow M\sim -\ell^2\log(1-d)$ ,
- Probability to accept a random message :  $P_e \approx d^{\binom{c}{2}}$ , none of them :  $P_e^* \leq P_e \ell^c$ ,
  - $P_e^* \leq \exp\left(\frac{c^2}{2}\left[\log_2(d) + \alpha\right]\right) \to 0 \text{ if } \alpha = -\beta\log_2(d), \beta < 1.$
- Conclusion :  $\eta \sim \beta \log_2(1-d) \log_2(d) \log(2)$

## Asymptotic behavior

## Storage diversity

**Theorem :** consider  $M = \alpha \log(c)\ell^2$ , with  $\log(c) = \log(\log(\ell))$ , then :

- $\bullet$  For  $\alpha>2$  , random messages are accepted with probability that goes to 1,
- For  $\alpha=2$ , probability is strictly positive,
- For  $\alpha < 2$ , probability goes to 0.

#### Stability and error correction

**Theorem :** Consider  $M=\alpha\ell^2/c^2$  messages. Deactivate  $\rho c$  initial neurons, then for  $\alpha<-\log(1-\exp(-1/(1-\rho)))$ , probability to retrieve the message goes to 1.



<sup>&</sup>quot;A comparative study of sparse associative memories," Jour. Stat. Phys.

## Asymptotic behavior

## Storage diversity

**Theorem :** consider  $M = \alpha \log(c)\ell^2$ , with  $\log(c) = \log(\log(\ell))$ , then :

- $\bullet$  For  $\alpha>2$  , random messages are accepted with probability that goes to 1,
- For  $\alpha = 2$ , probability is strictly positive,
- For  $\alpha < 2$ , probability goes to 0.

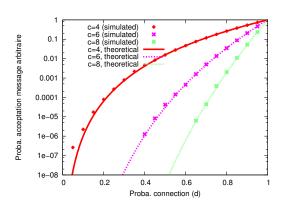
#### Stability and error correction

**Theorem :** Consider  $M=\alpha\ell^2/c^2$  messages. Deactivate  $\rho c$  initial neurons, then for  $\alpha<-\log(1-\exp(-1/(1-\rho)))$ , probability to retrieve the message goes to 1.



<sup>&</sup>quot;A comparative study of sparse associative memories," Jour. Stat. Phys.

## Experiments



False positive rate for various number of clusters c and  $\ell=512$  units per cluster.

With 1% of error, efficiency is 137.1%

## Performance (error correction)

### **Amari** Willshaw No structure No structure Weights No weights 0.8 Taux d'erreur 0.6 0.4Amari Willshaw 0.2Proposé (SOM) $10000\ 20000\ 30000\ 40000\ 50000$

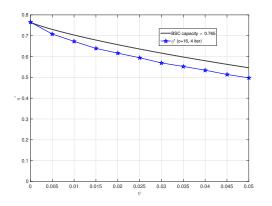
#### Proposed model

- Clusters
- No weights

- 2048 units total,
- 8 units per message,
- 4 initially activated units,
- $(\ell = 256)$ ,
- $\eta \approx 50\%$ .

<sup>&</sup>quot;A comparative study of sparse associative memories," Jour. Stat. Phys.

#### Robustness towards noise



c=8 clusters with  $\ell=256$  units each ( $\sim$  64 bits of information per message), Messages are retrieved from half-erased versions.

"Fault-Tolerant Associative Memories Based on c-Partite Graphs," IEEE T.S.P.



## Binary models vs. continous models

#### Continuous models

- Information is carried out by weights,
- Learning performance is great,
- "Connection weights exhibit a heavy-tailed lognormal distribution spanning five orders of magnitude" [2].
- External world is continuous.

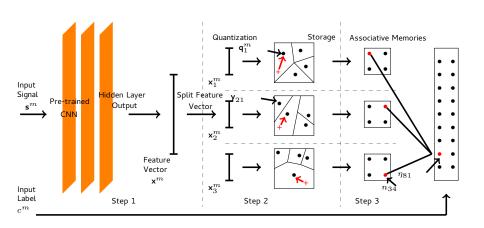
## Binary models

- Information is carried out by existence of connections,
- Storing performance is great,
- "The probability that a synapse fails to release neurotransmitter in response to an incoming signal is remarkably high, between 0.5 and 0.9" [1].
- Language is discrete.

 $<sup>\</sup>label{eq:communication} \mbox{[1] "Communication in neuronal networks", Science, 2003.}$ 

<sup>[2] &</sup>quot;A Predictive Network Model of Cerebral Cortical Connectivity Based on a Distance Rule", Neuron, 2013.

## Complementarity learning/storing



## Complementarity learning/storing

|                    | Proposed        | Other techniques       |                        |
|--------------------|-----------------|------------------------|------------------------|
|                    | method          | 1-NN                   | 5-NN                   |
| Accuracy(%)        | 82              | 82.6(82)               | <b>86.07</b> (83)      |
| complexity- $\ell$ | negligible      | $\geq 2 \cdot 10^{10}$ | $\geq 2 \cdot 10^{10}$ |
| complexity-p       | $4.1\cdot 10^5$ | $3.2 \cdot 10^6$       | $3.2 \cdot 10^{6}$     |
| Memory usage-ℓ     | $1.3\cdot 10^7$ | $3.7\cdot 10^7$        | $3.7 \cdot 10^7$       |
| Memory usage-p     | $1.3\cdot 10^7$ | $3.7\cdot 10^7$        | $3.7 \cdot 10^7$       |

Table – Accuracy, complexity and memory usage ratio of I-I approach (P=64, K=200 and R=1) compared to  $\lambda$ -NN search using PQ (K=200, P=64) for Cifar10. Numbers between brackets accounts for product random sampling instead of PQ.

