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Overview	

•  Compartmental	Models	
•  Cable	theory	
•  Reduced	models	



Overview	-	compartmental	models	

•  Conductance-based	models	of	neurons	are	composed	of	mul;ple	
spa;al	compartments	

•  Can	reproduce	the	electrical	behavior	of	the	cell	to	a	high	level	of	
accuracy	

•  Allow	experimenta;on	that	may	not	be	physically	possible	
•  Allow	inves;ga;on	of	any	biophysically	relevant	parameter	spaces	
•  Useful	for	tes;ng	theories	and	hypotheses	
•  Inform	and	guide	experimental	inves;ga;on	



Dendri;c	facts	
•  Branching:	Dendrites	bifurcate	repeatedly	crea;ng	elaborate	trees.	Purkinje:	~400	

terminal	dendri;c	;ps,	motoneurons:	~10	;ps.	A	type	of	neurons	oMen	has	a	
unique	branching	paOern	

•  Diameters:	Near	the	soma	diameters	can	be	a	few	μm.	Diameter	falls	as	they	
branch	

•  Dendrites	are	studded	with	dendri;c	spines	(~0.1μm	diameter,	~1μm	length).	In	
cortex,	they	receive	the	majority	of	excitatory	input	

•  Dendri;c	tree	length	can	vary	greatly	from	100-200	um	to	1-2mm	(motoneurons).	
Total	dendri;c	tree	length	can	exceed	1cm	

•  Majority	of	brain	volume	is	occupied	by	dendrites	

•  Surface	area	of	dendri;c	tree:	2000	–	750000	um2	
•  Volume	of	a	dendri;c	tree:	up	to	30000	um3	

•  Synapses	are	not	randomly	distributed.		
–  Inhibitory	synapses	are	more	proximal		
–  Excitatory	input	sources	may	map	to	specific	layers	of	a	neuron	
–  Excitatory	inputs	may	be	present	in	conjuc;on	with	inhibitory	inputs	away	from	the	soma	



Equivalent	Cylinder	models	
•  The	morphology	of	a	neuron	

is	broken	down	to	a	set	of	
cylinders	

•  Cylinders	are	connected	to	
each	other	through	axial	
resistances	

•  Cylinders	can	have	different	
lengths	and	diameters,	and	
different,	but	uniform,	
membrane	proper;es	

•  Every	cylinder	can	be	
treated	as	an	isopoten;al	
element	

Bower	,	The	Book	of	GENESIS,	2003	



•  In	each	cylinder	voltage	across	the	cell	membrane	vm	
depends	on:	
–  passive	proper;es	of	the	membrane	(membrane	
capacitance	cm	and	membrane	resistance	Rm)	

–  voltage-dependent	currents	(e.g.	Gk)		
–  and	external	current	input	

Equivalent	Circuits	



Mul;-compartmental	models	
•  Compartments	are	

connected	with	each	other	in	
series	through	the	axial	
resistances	(Ra)	

•  Axial	resistance	models	the	
movement	of	electrical	
charge	when	there	is	a	
voltage	differen;al	across	
successive	compartments.		

•  The	equivalent	circuit	
consists	of	a	capacitor	that	
simulates	the	non-
conduc;ng	bilipid	cell	
membrane	and	a	resistor	as	
an	analog	of	the	conduc;ng	
ionic	channels	on	the	
membrane.		



Cable	theory	

•  Cable	Theory	solves	the	problem	of	the	electric	current	flow	
in	and	out	of	a	cylindrical	core	conductor		

•  The	spa;al	spread	of	electrical	signals	over	;me	is	modeled	
with	a	nonlinear	differen;al	equa;on	

•  Neuronal	simulator	programs	make	use	of	a	Taylor-series	
approxima;on	of	this	equa;on	



Input	resistance	
•  At	a	given	point	in	the	dendri;c	tree,	Rin	

is	the	ra;o	V0/I0	when	a	steady	current	
I0	is	applied	to	that	point	

•  Rin	depends	on	the	diameter	of	the	
cylinder	

•  A	dendrite		dp	that	bifurcates	in	two	
dendrites	d1	and	d2	behaves	as	a	
con;nuous	cable	for	current	that	flows	
from	parent	to	daughters	if	:		

•  Thus	a	branch	point	that	obeys	this	rule	
is	equivalent	to	a	uniform	cylinder	

•  Many	types	of	dendri;c	trees	obey	this	
rule	such	as	a-motoneurons,	but	others	
don’t	(cor;cal,	hippocampal)	

•  This	concept	has	been	extended	to	
dendri;c	trees	(Rall	1959,1989)		



Modeling	compartmental	neurons	
•  Thousands	of	compartments	may	

be	used	to	simulate	extended	and	
complex	dendri;c	trees	such	as	the	
Purkinje	cell	

•  Most	models	use	3D-
reconstruc;ons	based	on	light	
microscopy	images	of	biocy;n-filled	
cells	using	specialized	soMware	
(Neurolucida)	

•  Most	models	employ	simplifica;ons	
to	reduce	the	number	of	simulated	
cylinders	

•  Reducing	a	number	of	passive	
dendri;c	trees	to	an	equivalent	
passive	cable	is	straighforward			

•  For	ac;ve	dendrites	this	is	not	
possible	due	to	the	different	local	
impedance	of	the	reduced	dendrite.		

•  Synap;c	spines	are	oMen	reduced	
to	single	points		

DeSchuOer	1994	



Ø  Ro	=	vanishingly	small		

Ø  Ri	=	Dependent	on	cytoplasm	
resis;vity	and	crossec;onal	
area:	

	 	 	Ri	=	(L/A)*r				where						
		 	r	=	cytoplasmic	resisivity		

Ø  Rm	=	Dependent	on	specific	
membrane	resis;vity/cm2		

	
	Voltage	aOenua;on	with	
conduc;on:	

	
a)  Along	distance	

b)  With	;me		
	
	

Passive	membrane	proper;es	

λ	=	distance	at	which	V=Vo*1/e	=	0.37	Vo	

λ	=	Rm/(Ri+Ro)	and	since	Ro	is	small		

	 		λ	=	Rm/Ri		

(LENGTH	or	SPACE	CONSTANT)		
	 	 		t	=	RmCm			

					(TIME	CONSTANT)	

Im	=	Cm	dV/dt	+	gm(V-Em)	



Ø  For	"short"	cells	passive	propaga;on	suffices	to	signal	a	poten;al	change	
from	one	end	to	the	other.		

Ø  If	the	axon	is	long,	this	is	inadequate	since	changes	at	one	end	would	decay	
away	almost	completely	before	reaching	the	other	end.				

Ø  If	the	change	in	poten;al	difference	is	large	enough,	then	in	a	cylindrical	
configura;on	such	as	the	axon,	a	pulse	can	ac;vely	propagate		at	full	
amplitude.			The	Hodgkin-Huxley	Equa;ons		(1952)	

From	passive	to	ac;ve	neurons	



Ac;ve	membrane	proper;es	

Ac;on	Poten;al	Genera;on	

Hodgkin	and	Huxley	(1952):	they	did	a	series	of	experiments	using	the	giant	axon	of	the	squid	to	
characterize	the	mechanisms	of	ac;on	poten;al	genera;on	
	
	

	 		
	
	
In	reality,	many	more	mechanisms	are	responsible	for	membrane	poten;al	changes,	like	Ca++	
channels	(IcaT,	IcaR,	IcaL),	other	types	of	K+	channels	(IA,	Im,	IsAHP,	ImAHP)	and	Na+	channels	(INap),	
pumping	and	buffering	mechanisms	e.t.c		

Cm  Membrane capacity 

GK Voltage-dependent 
Potassium conductance 

GNa Voltage-dependent 
Sodium conductance 

GL Leak conductance 

Iext	=	Cm	dV/dt	+	GL(V-EL)	+	GKn4(V-EK)	+	GNam3h(V-ENa)		



Modeling	ac;ve	ion	channels	

Voltage-gated	ion	channels	are	some;mes	open,	some;mes	closed,	depending	on	
the	membrane	poten;al	and/or	other	factors.	
	
Passive	Ion	Channels:	 	Ii	=	(V	−	Ei)/Ri	
Ac;ve	Ion	Channels: 	Ii	=	Pi(V	−	Ei)/Ri	
	

	 	 	 	Probability	that	ion	channel	is	open	
	
Persistent	Channels	(K+)	
Potassium	channels	are	only	open	when	all	4	subunits	are	open.	
n	is	the	probability	of	the	subunit	being	open.	
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Ac;ve	ion	channels	

Transient	Sodium	channels	(Na+)	
Transient	sodium	channels	are	only	open	when	all	3	ac;va;on	units	(m)	and	the	
inac;va;on	unit	(h)	are	open.	
	
	
	
	
	
	
	



Ac;on	poten;als	

Larger	τ	means	slower	channel	response	to	voltage	



Model	Calibra;on	
•  In	order	for	a	model	neuron	to	

perform	as	closely	as	possible	to	a	
real	neuron,	it	needs	to	be	
constrained	against	all	the	available	
experimental	data	for	the	specific	
neuron	type	

•  Calibra;on	requires	careful	
examina;on	of	the	relevant	
literature,	experimental	evidence,	
as	well	as	the	intui;on	of	the	
experimenter	

•  Voltage	responses	of	the	cell	to	in	
vitro	current	s;mula;on	with	
varying	simple	currents	can	be	used	
as	benchmark	for	the	model	

•  In	order	to	constrain	kine;c	models,	
whole	cell	recordings	are	oMen	
used,	aOemp;ng	to	match	the	
model	response	to	the	recorded	
waveforms	

Destexhe	1998	



Examples	of	compartmental	
modeling	studies	from	our	lab	



Morphology	
CA1	pyramidal	cell	
183	compartments	
1830	sec;ons	
Channels	
INa	
IKdr	
IA	
INap	
Im	
Ih	
ID	
ICaT	
ICaR	
ICaL	
ICaN	
IfAHP 
IsAHP	
ImAHP	
Synapses	
NMDA,	AMPA,	GABAA,	GABAB	

The	model	was	heavily	validated	using	mul;ple	
experimental	data	from	in	vitro	studies	

Single	neuron:	dendri;c	integra;on	in	a	CA1	
pyramidal	cell	model	



B.	Polsky	et	al,	Nat.	Neuro.,	2004		 									C.	Losonczy	&	Magee,		Neuron,	2006	

Predic;on:	dendrites	integrate	inputs	like	semi-
independent	sigmoidal	units	

	Experimental	verifica8on	

Poirazi	et	al,	Neuron,	2003a 		



Coincidence	detec;on	in	CA1	obliques	

Mul;site	two-photon		
glutamate	uncaging.	
Single	pulse	s;mula;on.	

0.1ms																2ms	

Losonczy	&	Magee,	Neuron,	2006	
also	see	Ariav	et	al,	J.	Neurosc.,	2003	

Synchronous	s;mula;on	à	dendri;c	spikes	

Single	Dendrite	 Average	

CA1	obliques	detect	(amplify)	only	synchronous	inputs	



Predic;on:	non-synchronous	and	bursty	can	also	
be	detected	

Channels	
INa	
IKdr	
IA	
INap	
Im	
Ih	
ID	
ICaT	
ICaR	
ICaL	
ICaN	
IfAHP 
IsAHP	
ImAHP	
Synapses	
NMDA,	AMPA,	GABAA,	GABAB	

0.1ms											2ms	

Synchronous	s;mula;on		
à	dendri;c	spikes	

Model	
2-pulse	s;mula;on	

Gomez	et	al,	Front.	Comp.	Neurosc.,	2011	
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The	2-layer	NN	
predicts	firing	
frequencies	very	
accurately.	Το	2-r2	=	
0.93	

A	simple	2-layer	ANN	abstrac;on	predicts	
The	average	firing	frequency	of	the	model		
to	>	1000	inputs	paOerns	with	high	accuracy.	

Poirazi	et	al,	Neuron,	2003b	

Predic;on:	CA1	pyramidal	neuron	as	a	2-layer	ANN	

Measure	firing	rate	in	response	to	>	1000	different		
synap;c	arrangements	



What	is	the	benefit	of	having	such	neurons?	

Poirazi	&	Mel,	Neuron,	2001.	

Nonlinear	neurons	can	learn	one	order	of	magnitude	(45	8mes)	more	memories	than	linear	neurons.	



All	inputs	sum		
at	the	axon	

Inputs	sum	in	the	dendrite	
and	outputs	at	the	axon	

More	and	larger	synapses	are	found	close	
to	the	branch	point	

Serial-sec;on	electron	
microscopy	(ssEM)	to	
reconstruct	excitatory	
synapses	along	individually	
labeled	(in	vivo)	apical	
oblique	dendrites.	

Proposed	2-stage	model	 Katz	et	al,	Neuron,	2009	

Experimental	support	for	2-stage	integra;on		



Synaptic mechanisms Intrinsic mechanisms 

Wang, 1999  Egorov et al, 2002  

Goldman-Rakic, 1992  

Simula;ng	working	memory	in	the	PFC	



Single	neuron:	L5	PFC	pyramidal	neuron	
model	expressing	Persistent	Ac;vity	

Ionic membrane mechanisms 
INaf  - fast Na+ current, includes slow 
inactivation 
INap – persistent Na+ current 
IKdr  - delayed rectifier K+current 

IA – A-type K+ current 

ID – slow inactivating K+ current 

Ih – hyperpolarization activating current 
ICaLc – L-type Ca++ current 
ICaN – N-type Ca++ current 
ICaR – R-type Ca++ current 
ICaT – T-type Ca++ current 
IfAHP – fast Ca++ activated K+ current 

IsAHP – slow Ca++ activated K+ current 
dADP -‘ip3’-induced Ca++ release and CAN 
current 
Mechanism for calcium buffering and extrusion 
Mechanism for K+ extrusion 
 
Synaptic Mechanisms 
NMDA, AMPA, GABAA, GABAB 

20 Hz 
synaptic 
stimulation in 
basal 
dendrites 
 
dADP 
activated 

No 
persistent 

Persistent 

Persistent	ac;vity	is	induced	with	a	probability,	depending	on	
the	spa;al	arrangement	of	synap;c	inputs	onto	basal	dendrites.	

Kiki	Sidiropoulou	



Predic;on:	Persistent	ac;vity	emerges	when	
inputs	are	located	in	thin,	terminal	;ps	

Persistent	ac;vity	trials	are	associated	with	inputs	located	in	more	distal	dendrites	
and	larger	NMDA	spikes.		
	
Since	NMDA	conductance	is	the	same,	dendri;c	morphology	underlies	differences	in	NMDA	spikes.																			

Sidiropoulou	and	Poirazi,	PloS	Comp.	Biol.,	2012	

No	persistent	
	Persistent	

Persistent	No	Persistent	



Predic;on	&	support:	a	dendri;c	
mechanism	for	input	specificity	

A	dendri;c	mechanism	for	input	specific	
persistent	firing,	based	on	NMDA	spikes	

Figure	5.	Dendri;c	mechanisms	contribute	to	the	selec;vity	of	subthreshold	
orienta;on	tuning	in	vivo. 	 		

NMDA-dependent	dendri;c	spikes	increase	the	
selec;vity	of	neuronal	responses	to	the	orienta;on	of	a	
visual	s;mulus	(orienta;on	tuning)	

Sidiropoulou	and	Poirazi,	PLoS	Comp.	Biol.,	2012	 Smith	et	al,	Nature,	2013	



Ø  Pyramidal neurons contain all mechanisms in 
the detailed single cell model 

Ø  Connectivity based on experimental anatomical 
and electrophysiological data 

Ø  Latencies of connections drawn from Gaussian 
distributions, in accordance with experimental 
data 

Ø  Membrane noise due to stochasticity in ionic 
currents (Poisson distribution)  

Ø  Background synaptic activity 

Connectivity properties 

Type	of	connec8on Loca8on #	of	synapses Reference 

Thalamocor;cal	(incoming) Proximal	dendrite 90 (Kuroda	M	et	al.,	1998) 

Pyramidal	recurrent Basal	dendrite 5 (Markram	et	al.,	1997) 

Pyramidal-to-interneuron Soma 2	 (Buhl	et	al.,	1997) 

Autapses	in	pyramidal	neurons Basal	dendrite 1 (Lübke	et	al.,	1996) 

Interneuron-to-pyramidal Soma 4 (Gabor	Tamás	et	al.,	1997) 

Autapses	in	the	interneuron Soma 12	synap;c	contacts	

producing	~350pA 

(Bacci	et	al.,	2003;	G	Tamás	et	

al.,	1997) 

Nassi Papoutsi 

L5 PFC microcircuit 

Microcircuit	level:	L5	PFC	module	expressing	
Persistent	Ac;vity	



Persistent	ac;vity	is	induced	in	the	microcircuit	
given	sufficient	NMDA	current	

NMDA conductance is necessary for persistent activity induction. 
Blockade of NMDA receptors eliminates persistent activity. 

Papoutsi	et	al,	PloS	Comp.	Biol.,	2014	



Predic;on:	dendri;c	NMDA	spikes	are	cri;cal	for	
persistent	ac;vity	induc;on		



Summary  
 

Ø  Predic;on:	dendrites	of	CA1	pyramidal	cells	integrate	inputs	as	semi-
independent	sigmoidal	units.	Verified	

Ø  Predic;on:	CA1	neurons	act	as	2-stage	integrators.	Evidence	in	favor	
Ø  Predic;on:	dendri;c	synapse	loca;on	may	serve	as	a	mechanism	for	

s;mulus	specificity	via	the	induc;on	of	dendri;c	spikes.	Supported	
experimentally		in	other	neurons	

Ø  Predic;on:	dendri;c	NMDA	spikes	play	a	permissive	role	for	the	
induc;on	of	persistent	ac;vity.	Pending	

	



Simplified	dendri;c	models	

•  Why	simplify	dendrites?	
– More	compact	mathema;cal	formula;on	
– Easier	to	analyze	theore;cally	and	analy;cally	
– Make	it	easier	to	simulate	neurons	in	large	
numbers	

– Comparison	with	the	learning	models	of	Ar;ficial	
Neural	Networks	



•  Cell	is	modeled	as	a	set	of	m	iden;cal	branches	connected	to	a	soma,	where	
each	branch	contains	k	excitatory	synap;c	contacts.		

•  Each	synapse	is	driven	by	one	of	d	input	lines	and	is	given	a	small	integer-
valued	weight.	

Linear	

Nonlinear	

Poirazi,	Neuron	2001	

A	nonlinear	cell	can	dis;nguish	between	
wiring	configura;ons	

Dendri;c	response		

Cell	output	=	excitatory	-	inhibitory	

Simplified	model	of	a	neuron	with	linear	
or	sigmoidal	dendrites	



Storage	capacity	is	increased	50-fold	
for	the	nonlinear	compared	to	the	
linear	model	cell.	

Poirazi,	Neuron	2001	

Sigmoidal	dendrites	increase	storage	capacity		



Network	level:	role	of	DG	dendrites	in	
PaOern	Separa;on	

•  PaFern	separa8on:	computa;onal	
task	which	transforms	overlapping	
(similar)	input	to	non-overlapping	
representa;ons	

	

•  Dentate	Gyrus:	hippocampal	
subregion	that	accomplishes	this	task	

Spiros	Chavlis	



A	simplified	network	model	of	the	DG	where	
Granule	Cells	are	equipped	with	dendrites	

A	simplified	Dentate	Gyrus	network	model	

Cell	types	are	validated	against	experimental	data	



DG	dendrites	aid	paOern	separa;on	

Chavlis	et	al,	Hippocampus,	2016	



Learning	associa;ve	memories	

Memory	associa;ons	for	the	word	“fly”	 Fear/context	memory	associa;ons	in	mice	



Network	level:	associa;ng	memories	via	
neuronal	overlaps	

	New	findings	(Cai,	et	al,	Nature,	2016)	show	that	two	
memories	are	linked	if	learned	within	a	few	hours,	
due	to	overlapping	storage	in	common	neurons.	
This	ability	declines	with	age.	



Plasticity rules Nonlinear dendrites 

1. Synaptic Tagging & Capture (STC) 3. Branch Strength 
Potentiation/homeostasis 

4. Homeostatic 
Plasticity 
(additive scaling) 

1.2 Local or Global Protein Synthesis 
(L-LTP/L-LTD) 

5. Plasticity of neuronal 
excitability(learning-induced 
sAHP reduction) 

1.1. Calcium dependent  
E-LTP/E-LTD 

Integrate	and	fire	
	with	adapta8on	
+	sigmoidal	dendrites	

Integrate	and	fire	

Associa;ve	memory	network	model	

George	Kastellakis	



Associa;ve	memory	encoding	in	the	model	
Presenta8on:	Each	s;mulus	is	represented	by	a	set	of	afferent	
axons	which	ini;ally	target	70%	of	the	neurons	of	the	(naïve)	
network	at	randomly	selected	dendrites.		
	
Learning:		Each	s;mulus	(1s,	30	Hz	Poisson	train)	is	presented	
repeatedly	to	the	network	(for	4s)	and	plas;city	(synap;c	LTP/LTD,	
branch	strength	poten;a;on)	takes	place.	Homeosta;c	mechanisms	
&	plas;city	of	intrinsic	excitability	operate	aMer	learning.		
	
Recall:	By	presen;ng	S1	or	S2	we	recall	the	memory	(S1+S2),	we	
iden;fy	the	neuronal	popula;on		that	is	“recruited”	by	the	memory	
and	we	characterize	its	proper;es.	
	

S;mulus	1	

S;mulus	2	

Associa;ve	memory	M	=	S1	+	S2	
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Encoding	a	single	associa;ve	memory	

Ø Successful	encoding		of	a	(S1+S2)	pair	leads	to	20-30%	of	coding	neurons	(ff	>10Hz	
upon	presenta;on	of	either	S1	or	S2)	

Ø The	average	ff	of	these	neurons	is	10-15	Hz	

Ø The	network	response	aMer	learning	is	much	sparser	than	before,	especially	under	
Global	PRP	condi;ons	

%	of	Ac;ve/Coding	
Neurons	

Average	ff	of	
Ac;ve/Coding	neurons	

Popula;on	sparsity	
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Encoding	two	strong	memories	
	

Two	memories	separated	by	
several	hours	

Neuronal	Overlap	
neurons	coding	for	
both	memories	

Dendri8c	Overlap	
branches	with	
poten;ated	synapses	
from	both	memories	

Strong	memory	encoding	leads	to	increased	neuronal	excitability	of	the	encoding	neurons.	
The	increase	lasts	for	12	hours	
	



Neuronal	Overlap	 Dendri8c	Overlap	
(clustering)	

Encoding	two	memories		
	

Interference?	

Chance	

Binding	

Kastellakis	et	al,	Cell	Reports	2016	



Linking	mul;ple	memories	across	;me	

Predic8on:	memories	are	linked	through	neuronal	and	dendri8c	overlaps.	
Extend	of	linking	depends	on	the	mode	of	PRP	synthesis/availability.	



Linking	memories	via	synapse	
clustering	

Kastellakis	et	al,	Progress	in	Neurobiology,	2015	



Branch-Specific	Plas;city	Enables	Self-
Organiza;on	of	Nonlinear	Computa;on	in	Single	

Neurons	

Inputs	in	nonlinear	dendrites	with	plas;c	
coupling	strengths	
	

Soma	response	

upassive:	Passive	component	
uk	:	coupling	strength	
ak:	ac;ve	component	(dend.	spike)	

Legenstein,	J.Neurosci	2011	



Dendri;c	spikes	increase	dendri;c-
soma;c	coupling	strength	
	
This	is	coupled	with	an	STDP	rule	that	
is	dependent	on	the	depolariza;on	of	
the	dendri;c	branch	

Together	these	allow	each	dendrite	to	
discriminate	a	specific	combina;on	of	
input	characteris;cs	(binding),	for	
example	‘yellow	star’	and	‘black	
circle’ 		

Legenstein,	J.Neurosci	2011	

Feature	binding	in	ac;ve	dendrites	



Dendri;c	nonlineari;es	are	tuned	for	
efficient	spike-based	computa;ons	

Assuming	a	simple	nonlinear	
dendri;c	response	model	

Ujfalussy,	eLife	2015	

Neurons	op;mize	the	transforma;on	of	presynap;c	poten;als	to	postsynap;c	u	via	f	

However	this	func;on	is	implemented	in	neuronal	harware	through	presynap;c	
spikes	via	g		

	
The	authors	sought	to	iden;fy	the	proper;es	that	dendrites	must	have	so	that	
the	computa;on	is	op;mal	i.e.	f(u1,u2…)	≈	g(s1,s2…)	



•  The	authors	use	their	model	to	predict	the		op;mal	response	of	dendrites	
to	realis;c	inputs	from	other	neurons.		

	
–  When	inputs	are	uncorrelated,	the	op;mal	response	is	linear	(averaging)	

–  When	inputs	are	correlated,	the	op;mal	response	is	nonlinear.	

Ujfalussy,	eLife	2015	



Summary  
 

Ø  Predic;on:	dendrites	of	various	cells	integrate	inputs	as	semi-
independent	sigmoidal	units.	Verified	

Ø  Predic;on:	sigmoidal	dendri;c	integra;on	increases	storage	capacity	
Ø  Predic;on:	The	dendrites	of	DG	cells	contribute	to	paOern	separa;on	

by	enhancing	sparsity.	Pending	
Ø  Predic;on:	memories	are	linked	through	neuronal	and	dendri;c	

overlaps.	Verified	Extend	of	linking	depends	on	the	mode	of	PRP	
synthesis/availability.	Pending	

Ø  Predic;on:	sigmoidal	dendrites	become	tuned	to	recognize	associated	
informa;on.		Pending	

Ø  Predic;on:		ac;ve	dendrites	are	tuned	to	implement	spike-based	
computa;ons.	Explains	data	
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