

From computational imaging to optical computing

Laurent Daudet, CTO at LightOn

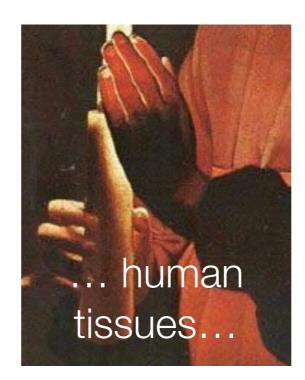
www.LightOn.io

laurent@lighton.io

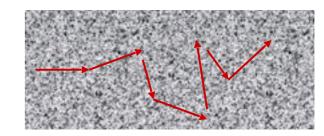
@Laurent_Daudet
@LightOnIO

Light scattering by diffusive materials

Part of our everyday experience:



Origin: light is scattered by inhomogeneities



Spoiler:

Multiple light scattering through diffusive materials is an extremely complicated process that can be described on a macroscopic level and under coherent light by extremely simple equations

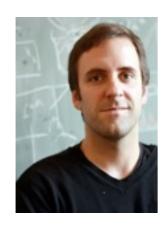
... with more than 10¹² parameters

It is then possible to leverage this to:

- perform new optics through « computational imaging »
- design new « optical computing » paradigms

A combination of expertise from:

- optics
- signal processing
- optimization / machine learning



Sylvain Gigan

LKB (UPMC / ENS)

Florent Krzakala

LPS (UPMC / ENS)

Igor Carron

Nuit Blanche / LightOn

And many others from their research teams and at LightOn

Outline

How to

- ... get Superman vision
- ... learn from the blur
- ... make pythons crawl faster

Outline

How to

- ... get Superman vision
- ... learn from the blur
- ... make pythons crawl faster

Imaging in scattering media

Conventionally: information from only unscattered ('ballistic') light

Beer-Lambert Law: Exponential decay of the ballistic light

No imaging beyond a few hundred microns in living tissues

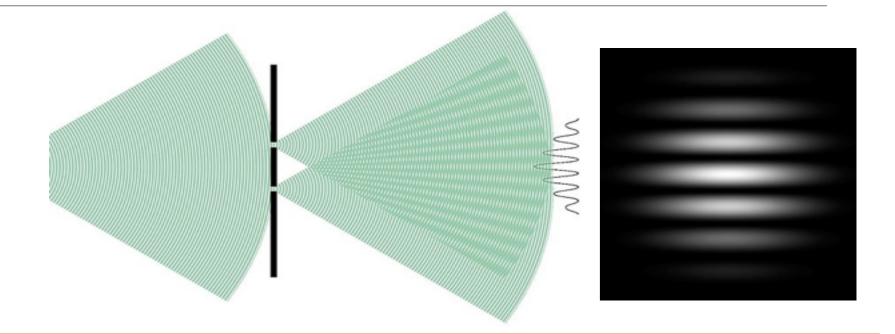
CAN WE GO DEEPER?

Scattering: a coherent process

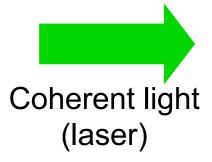
Young's slit experiment:

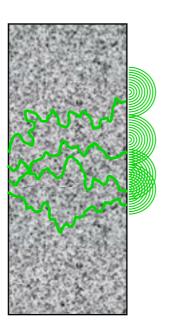
two wave interference

Fringes



Volume scattering:

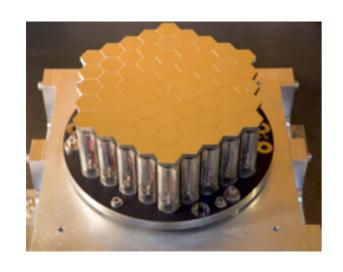


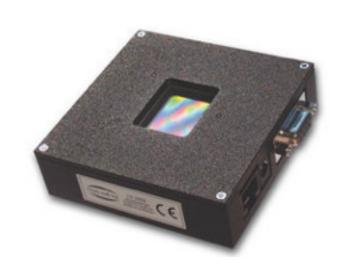


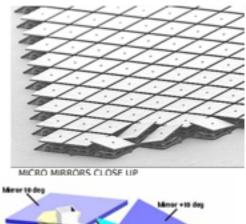


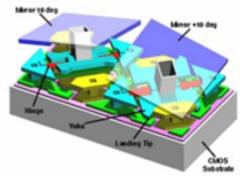
Speckle results from multiple interference between a multiplicity of random paths

Wavefront shaping: a tool to study scattering









Deformable mirrors

10-100 actuators moving: 10-20 microns Speed > kHz

Adaptive optics

Spatial Light Modulators based on Liquid crystals

>1 million pixels
Phase modulation at: 50Hz

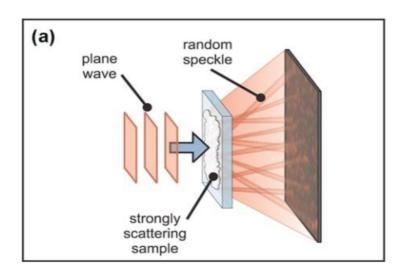
Display

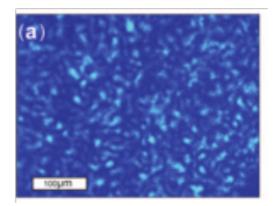
Spatial light modulators based on MEMS technology ex: Texas DLP/DMD

>1 million pixels binary ON/OFF at 20kHz

Display

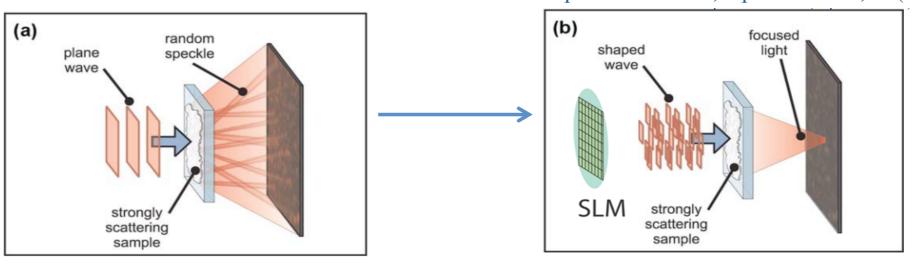
Focusing by Optimization

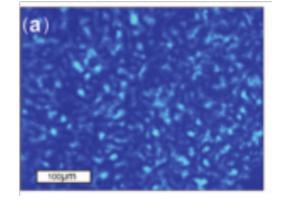


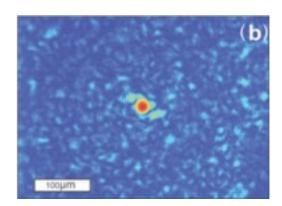


Focusing by Optimization

IM Vellekoop and AP Mosk, Optics Letters, 32(16) 2007



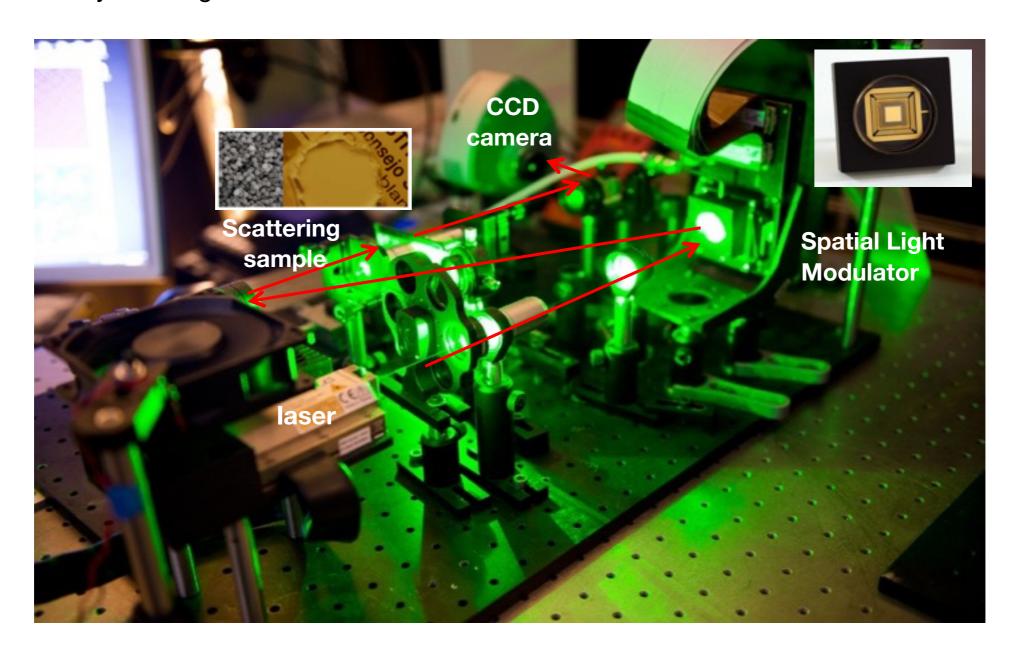




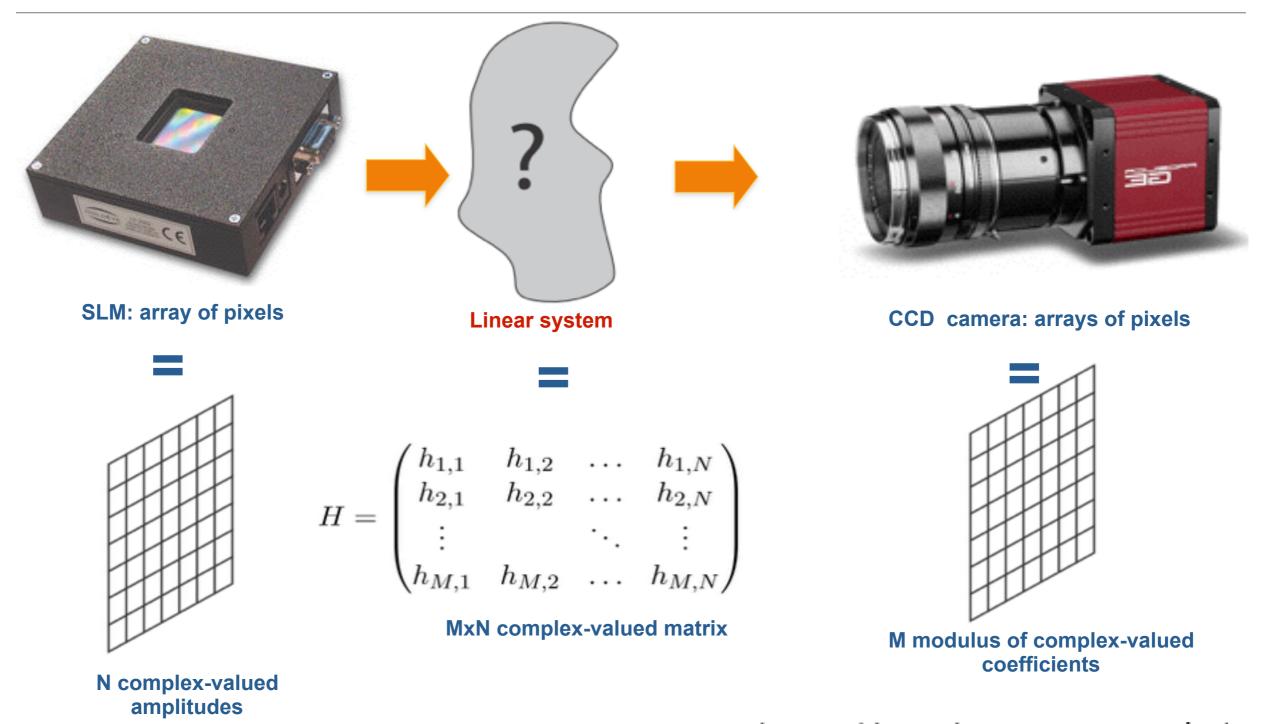
It is possible to shape the incoming wavefront to obtain a constructive interference on a single speckle grain « turn paint into a lens »

Focusing by Optimization

in the lab of Sylvain Gigan - ENS / LKB



General approach: the transmission matrix

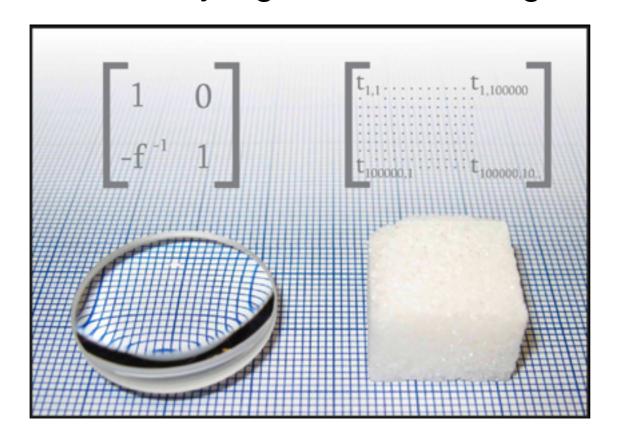


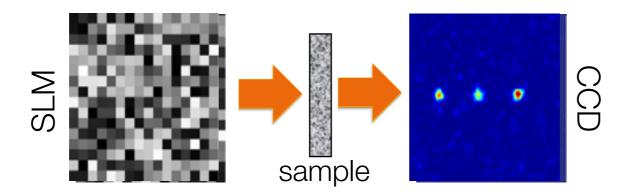
Popoff et al. *Nat. Commun.* 1:81 doi: 10.1038/ncomms1078 (2010)

$$\left| E_m^{out} \right| = \left| \sum_n h_{mn} E_n^{in} \right|$$

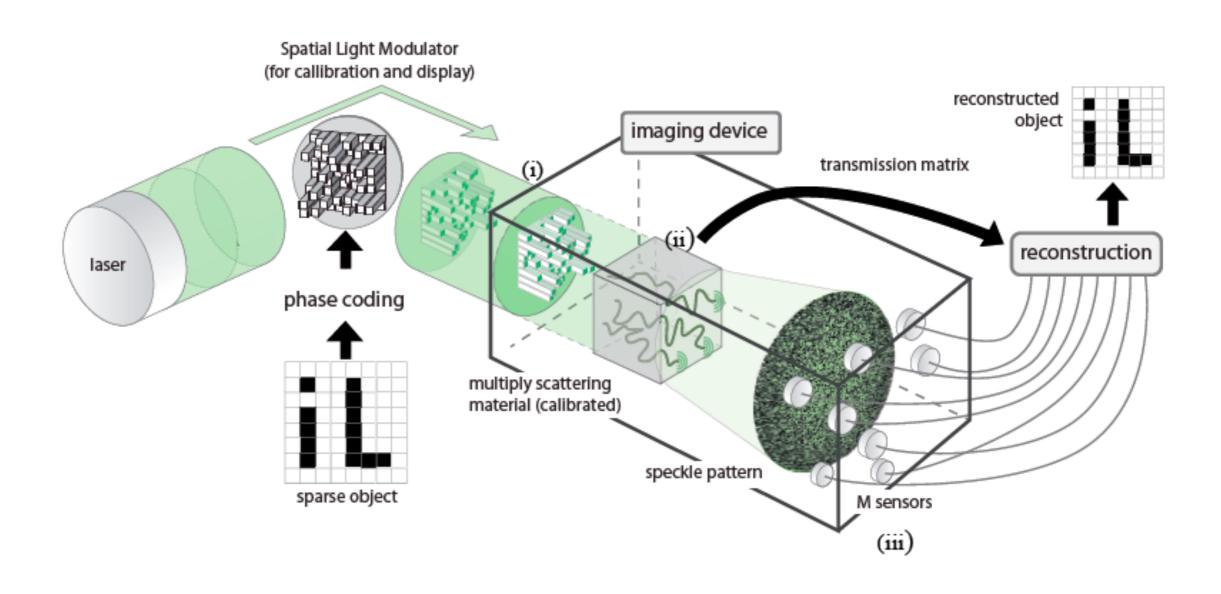
General approach: the transmission matrix

knowing the transmission matrix turns the scattering material into a « lens » with a very high number of degrees of freedom





Compressive imaging with scattering media



Proof of concept for **compressive imaging** with simple hardware

Take-home message Part 1

It is possible to « see » through a strongly scattering material

Volume scattering preserves the information content

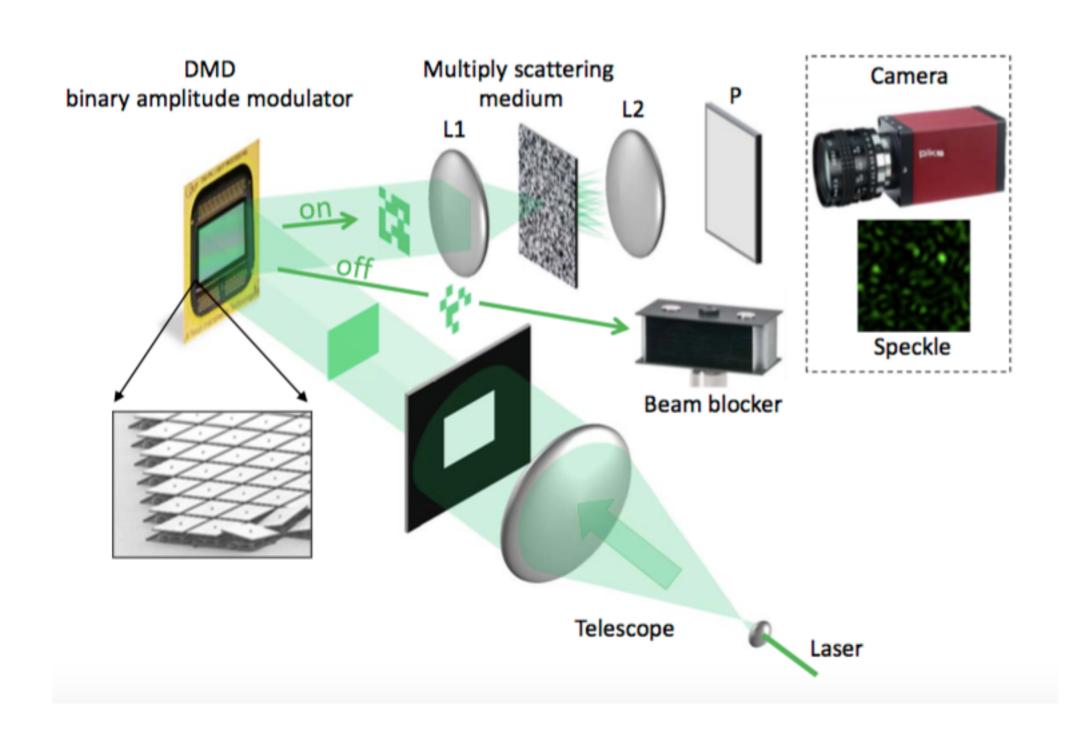
 It « optimally » mixes information, evenly spread on output pixels: all samples are created equal!

« Ask not what computing can do for optics – ask what optics can do for computing »

Outline

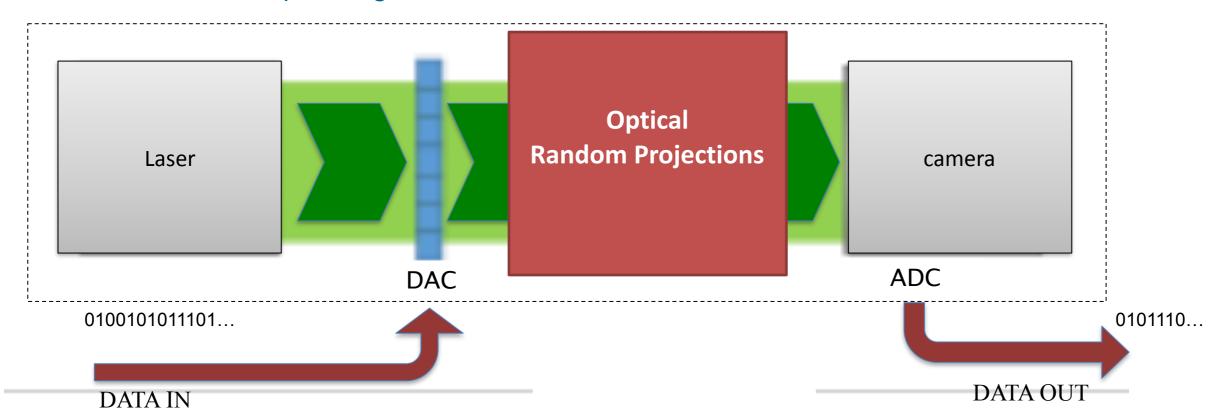
How to

- ... get Superman vision
- ... learn from the blur
- ... make pythons crawl faster



Now, let us just only consider the previous experiment as a "black box" with input in the SLM and output on the CCD

Spatial Light Modulator



This performs in the analog domain

$$y = |Mx|^2$$

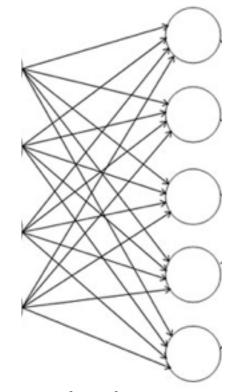
with M a complex random iid matrix

« Random Projections »

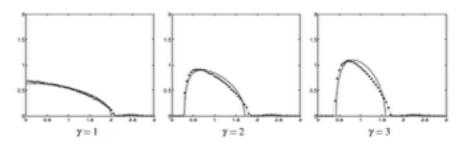
Very Large	&	Fast
size higher than $10^6 imes 10^6$		kHz operation →10 ³ such
(TBs of memory)		multiplies / s

Equivalent 10¹⁵ Operations / s : if it were a computer it would be in the PetaOPS range

 A matrix-vector multiplication followed by a non-linearity:
 a fully connected layer of a Neural Network



 Fixed dense random weights - you can guarantee their distribution (Gaussian iid complex)



Marčenko-Pastur law on singular values

• Random projections made $O(n^2) \rightarrow O(1)$

What does it enable?

Three case studies

1/ Simple proof-of-concept of image classification based on **Kernel Ridge Regression**, where the random features are obtained with the optical experiment.

2/ Fast Transfer Learning, on a VGG16 architecture

3/ Optical **Echo-State Network**

training

U : data Y: labels
$$\underset{\beta \in \mathbb{R}^{p \times q}}{\operatorname{argmin}} ||\mathbf{U}\beta - \mathbf{Y}||_2^2 + \gamma ||\beta||_2^2$$

Example: classifying the MNIST database

training set of 60000 training pictures (28x28) of handwritten digits

test set of 10000 digits

$$\beta = (\mathbf{U}^T\mathbf{U} + \gamma\mathbf{I}_p)^{-1}\mathbf{U}^T\mathbf{Y} = \mathbf{U}^T(\mathbf{U}\mathbf{U}^T + \gamma\mathbf{I}_n)^{-1}\mathbf{Y}$$
 regression
$$\tilde{\mathbf{Y}} = \tilde{\mathbf{U}}\beta = \tilde{\mathbf{U}}(\mathbf{U}^T\mathbf{U} + \gamma\mathbf{I}_p)^{-1}\mathbf{U}^T\mathbf{Y}$$

$$= \tilde{\mathbf{U}}\mathbf{U}^T(\mathbf{U}\mathbf{U}^T + \gamma\mathbf{I}_n)^{-1}\mathbf{Y}$$
 These are inner products

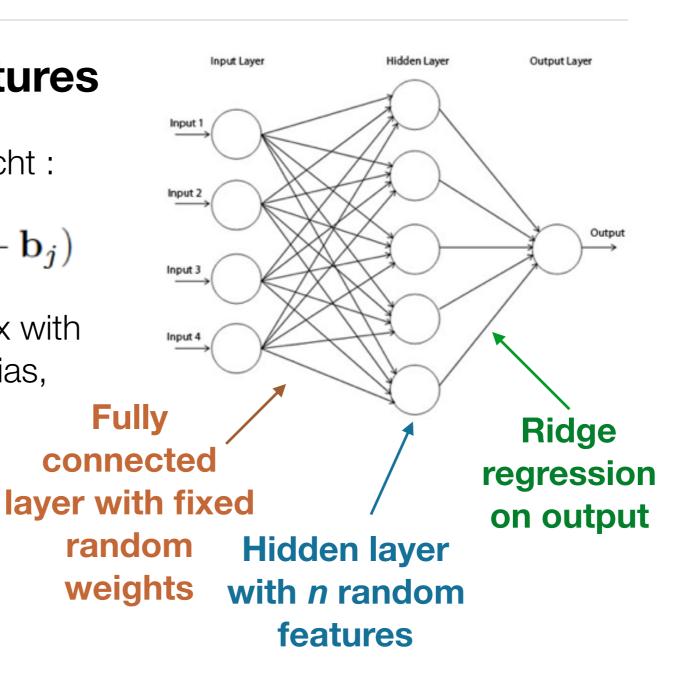
inverting this N x N matrix can be hard

Using random features

In the spirit of Rahimi-Recht:

$$\mathbf{X}_{i,j} = \phi((\mathbf{W}\mathbf{U}_i)_j + \mathbf{b}_j)$$

W random complex matrix with gaussian i.i.d. entries, b bias, and ϕ a non-linearity

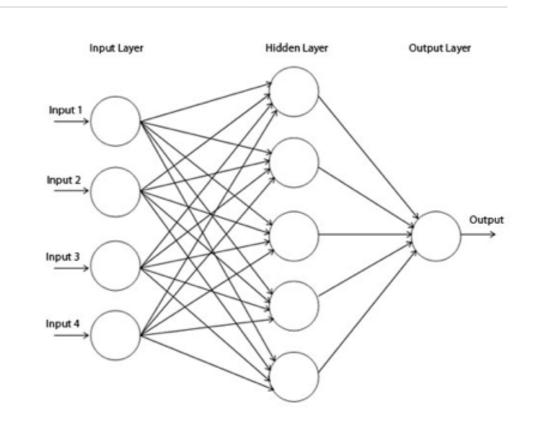


Using random features

In the spirit of Rahimi-Recht:

$$\mathbf{X}_{i,j} = \phi((\mathbf{W}\mathbf{U}_i)_j + \mathbf{b}_j)$$

W random complex matrix with gaussian i.i.d. entries, b bias, and ϕ a non-linearity



$$\tilde{\mathbf{Y}} = \tilde{\mathbf{X}} \mathbf{X}^T (\mathbf{X} \mathbf{X}^T + \gamma \mathbf{I}_n)^{-1} \mathbf{Y} = \tilde{\mathbf{X}} (\mathbf{X}^T \mathbf{X} + \gamma \mathbf{I}_N)^{-1} \mathbf{X}^T \mathbf{Y}$$
of size N x N

of size $\mathbf{n} \times \mathbf{n}$

N: number of training examples

n number of random features no dependency on N!

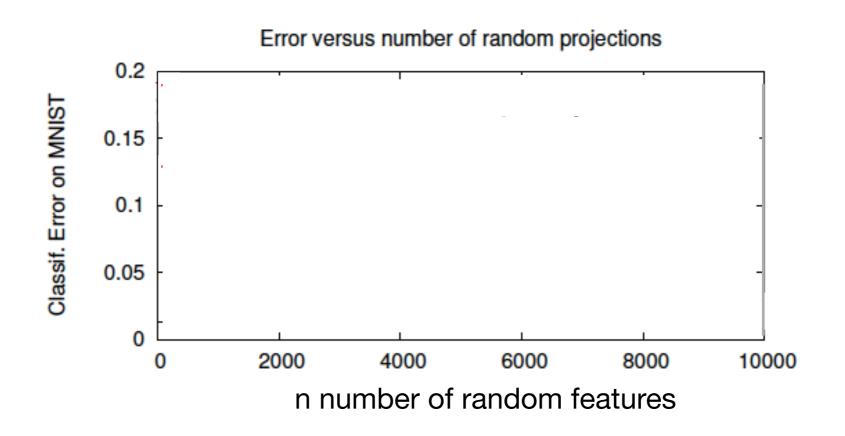
Kernel ridge regression

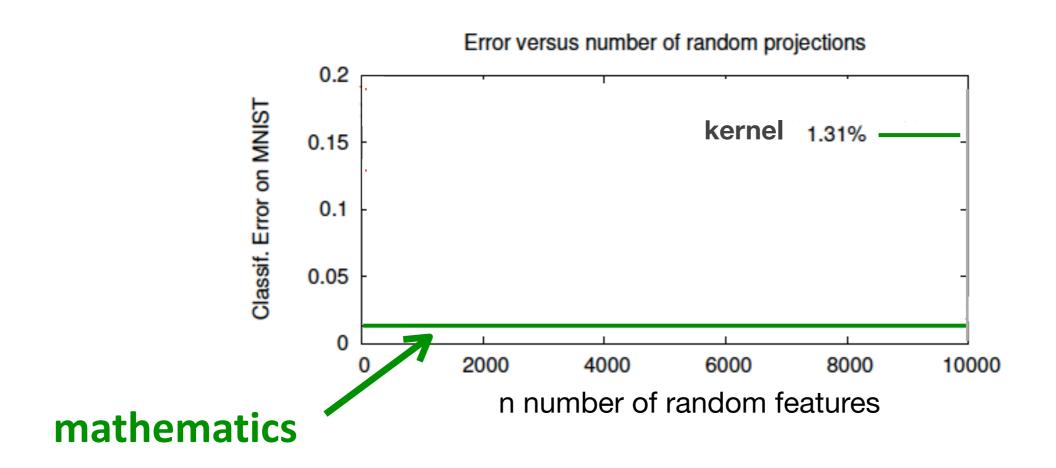
As $n \to \infty$, inner products tend towards a **kernel** that can be computed explicitly

$$k(\mathbf{U}_i, \mathbf{U}_j) = \frac{\sqrt{\mathbf{U}_i^T \mathbf{U}_i \mathbf{U}_j^T \mathbf{U}_j}}{2} \left\{ -(\sin^2 \theta) \mathcal{E}_K \left[\cos^2 \theta \right] + 2 \mathcal{E}_E \left[\cos^2 \theta \right] + |\sin \theta| \left(2 \mathcal{E}_E \left[-\frac{\cos^2 \theta}{\sin^2 \theta} \right] - \mathcal{E}_K \left[-\frac{\cos^2 \theta}{\sin^2 \theta} \right] \right) \right\}$$

 $\mathcal{E}_K[.]$ and $\mathcal{E}_E[.]$ are the complete elliptic integrals of the first / second kind θ is the angle between Ui and Uj

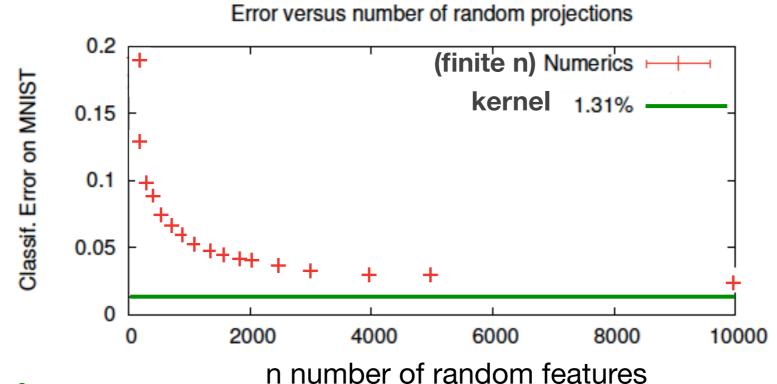
This kernel *numerically* provides a 1.31 % error rate on MNIST





kernel: asymptotic behavior as $n \rightarrow \infty$

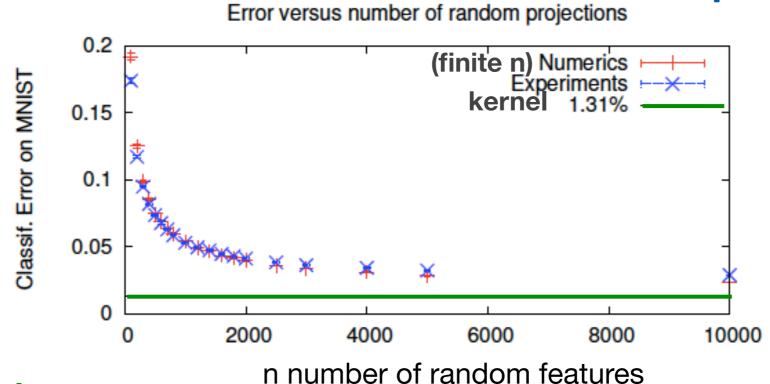
numerical simulations



mathematics

numerical simulations

optics experiment



mathematics

Biological motivation for dimensionality expansion with LSH

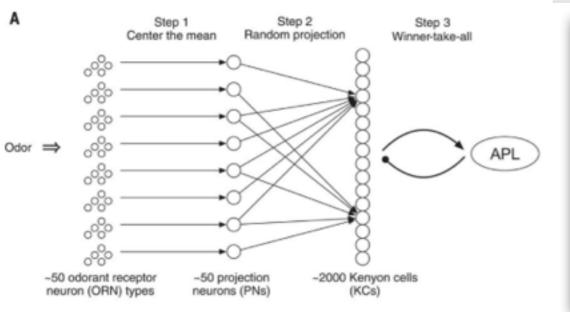
Science

Vol 358, Issue 6364 10 November 2017

Fly brain inspires computing algorithm

Flies use an algorithmic neuronal strategy to sense and categorize odors. Dasgupta *et al.* applied insights from the fly system to come up with a solution to a computer science problem. On the basis of the algorithm that flies use to tag an odor and categorize similar ones, the authors generated a new solution to the nearest-neighbor search problem that underlies tasks such as searching for similar images on the web.

Muhammad M. Karim, GDFL 1.2



A neural algorithm for a fundamental computing problem

Sanjoy Dasgupta¹, Charles F. Stevens^{2,3}, Saket Navlakha^{4,*}

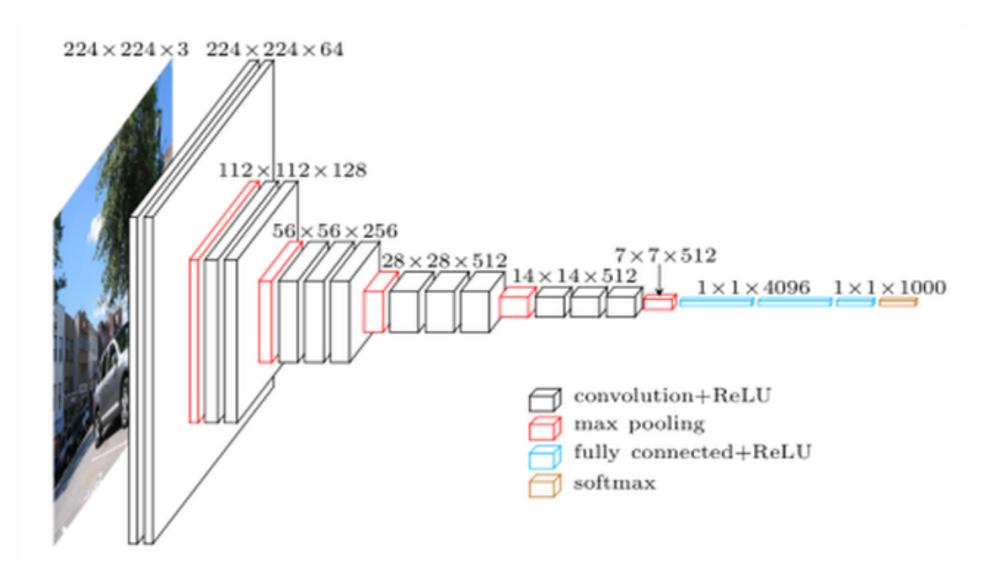
See all authors and affiliations

Science 10 Nov 2017: Vol. 358, Issue 6364, pp. 793-796 DOI: 10.1126/science.aam9868

Case study 2: Fast Transfer Learning

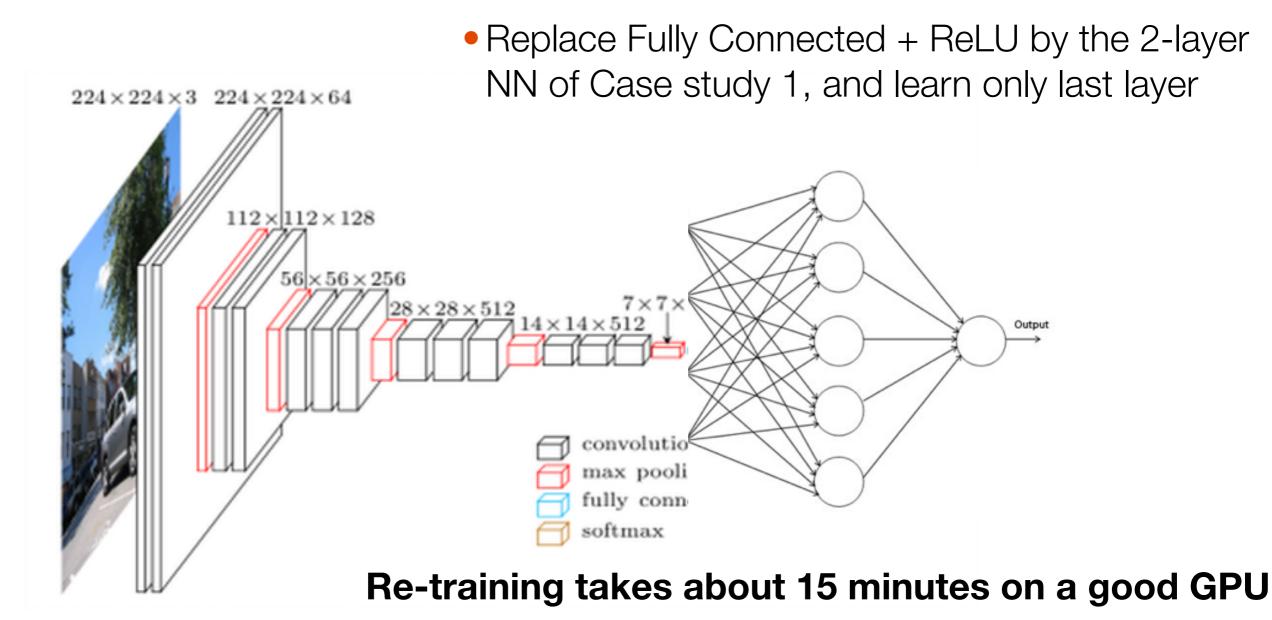
• Start with a standard VGG16 [Simonyan & Zisserman '14] architecture

Train for a week on ImageNet with a good GPU



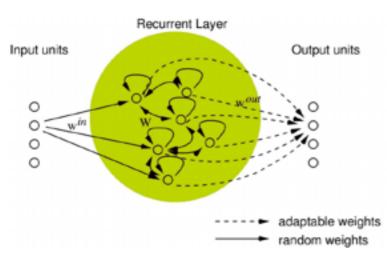
Case study 2: Fast Transfer Learning

- Now comes a second dataset : STL10
 - Keep trained convolutional layers unchanged



Case study 3: Optical Echo-State Networks

A physical implementation of large-scale echo-state networks (ESN)



[diagram from Obst et al. 2013]

Complex Medium

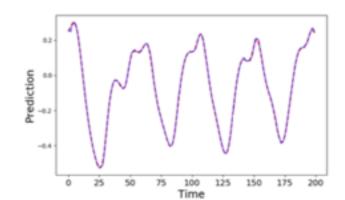
Neural network

SLM $E_{out} = HE_{in}$ Camera $|E_{out}|^2$ Input time serie(s)

OUT

regression on complex time series

Ex: predict dynamics of Mackey-Glass eqs. (Dong. et al)



2 orders of magnitude larger / x200 faster than standard PCs

Outline

How to

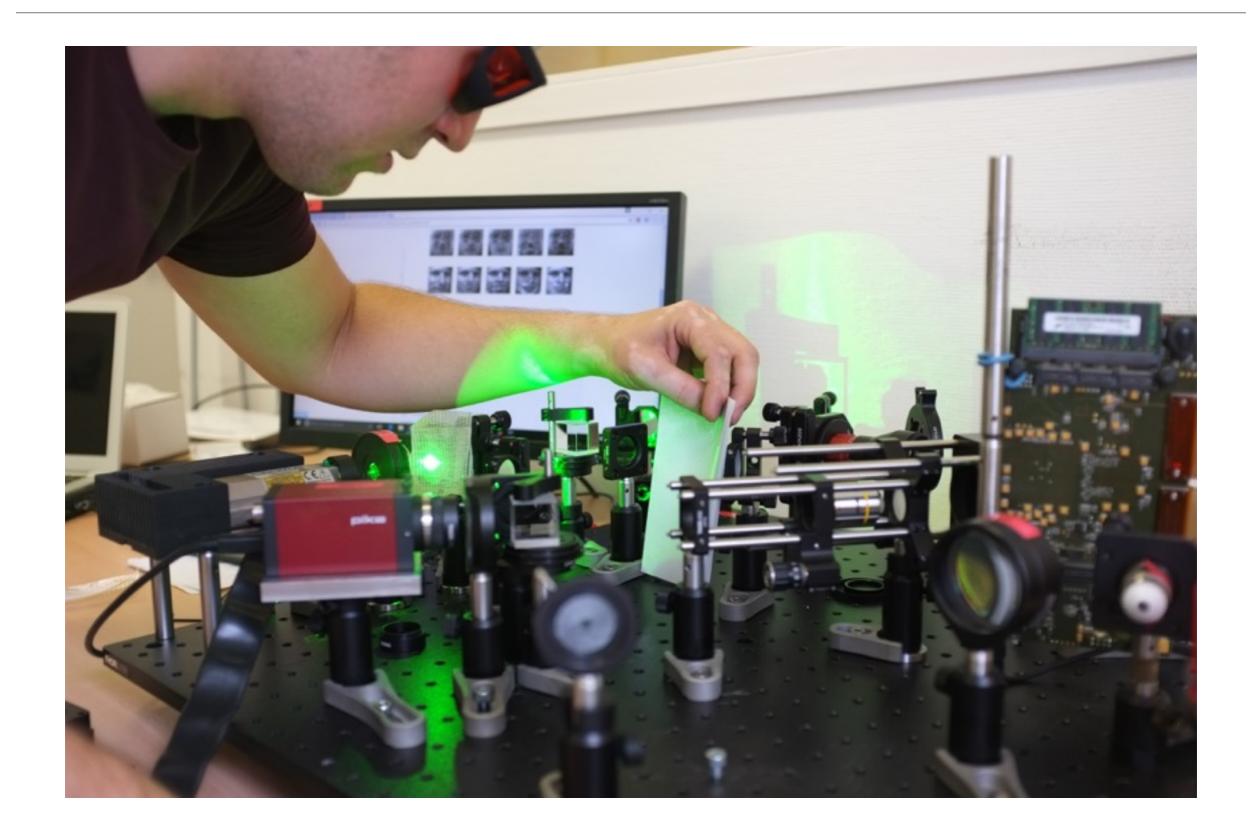
- ... get Superman vision
- ... learn from the blur
- ... make pythons crawl faster

Technology Roadmap

- Created 2016
- 4 co-founders

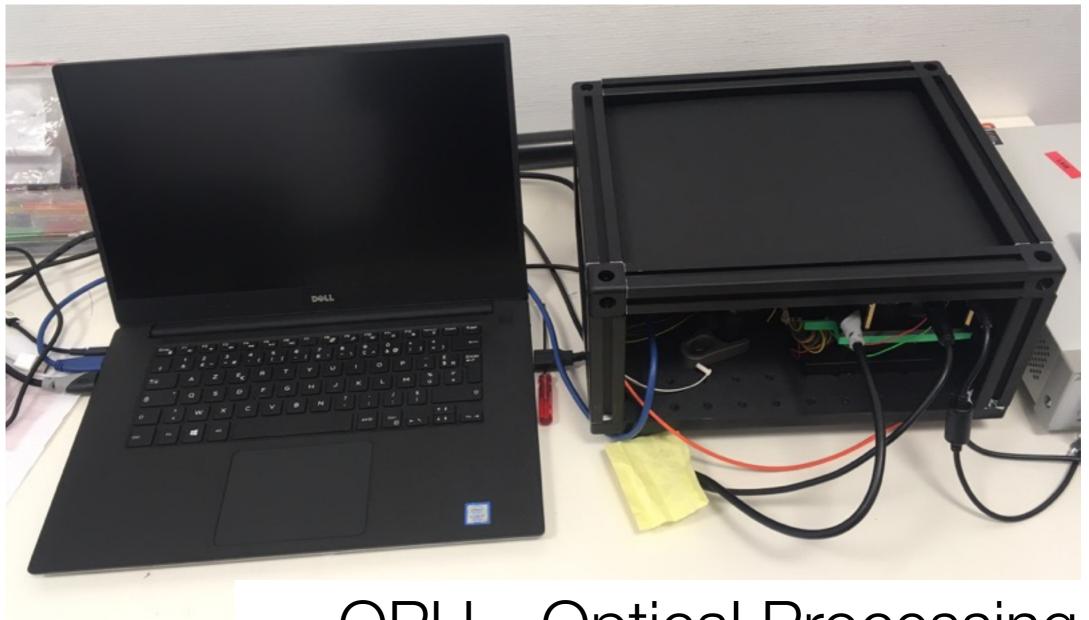
- 5 R&D engineers
- Based in Paris « Quartier Latin »

From lab experiment to prototype



From lab experiment to prototype

Using only off-the-shelf components - First prototype Spring 2017



« OPU » Optical Processing Unit

Current OPU prototype

Rack-size OPU low power (< 30W)

LightOn Cloud

- OPU + CPU/GPU in an external datacenter
- Cloud service already operational currently under alpha testing
- **Platform-as-a-Service** with integration within popular ML frameworks (Python-based: SciKit-Learn, TensorFlow in progress ...)
- Available for beta-users Q2 2018 (VMs via OpenStack)

Take-home message Part 2

- Three case studies so far for the OPU
 - Kernel Ridge Regression
 - Echo-State Network
 - Fast Transfer Learning

More to come soon

- sketching distributions
- NEWMA: a new method for scalable model-free online change-point detection, Nicolas Keriven, Damien Garreau, Iacopo Poli, arXiv:1805.08061
- dimensionality reduction for unsupervised learning
- locality sensitive hashing for fast NN search
- •

What's your case study?

 Register for beta test at <u>http://www.lighton.io/lighton-cloud</u>

User Interface: Python / Jupyter notebooks



Selected references

- "Imaging With Nature: Compressive Imaging Using a Multiply Scattering Medium", A. Liutkus et al., Scientific Reports 4 (july 2014)
- "Reference-less measurement of the transmission matrix of a highly scattering material using a DMD and phase retrieval techniques", A. Drémeau et al., Optics Express 23(9), 2015
- "Random Projections through multiple optical scattering: Approximating kernels at the speed of light", A. Saade et al., Proc. ICASSP (2016)
- "Scaling up Echo-State Networks with multiple light scattering", J. Dong et al., arXiv: 1609.05204
- "NEWMA: a new method for scalable model-free online change-point detection", Nicolas Keriven, Damien Garreau, Iacopo Poli, arXiv:1805.08061