

neural networks on the edge

GDR BioComp 2019 — IRCICA — 2019-05-15

Mathieu Poumeyrol — Principal Engineer — Snips

@kalizoy

Voice Interfaces

Privacy concerns & Snips approach

REVIEWS

Amazon Echo's calling feature includes a major privacy flaw

The only way to block someone right now is to turn the new feature off, a user discovers and reports.

TIM MOYNIHAN GEAR 12.05.16 9:00 AM

'Unplug your Alexa devices right now. You're being hacked.'

EXAAND GOGLE HOME WHAT HAPPENS TO THAT

Amazon Admit Alexa Listens To Your Private Conversations

Google Home Mini flaw left smart speaker recording everything

Updated: Google has released a firmware update to fix a Home Mini bug that made the device a privacy threat.

By Liam Tung | October 11, 2017 -- 13:00 GMT (14:00 BST) | Topic: Google

Anatomy of a voice assistant

Running offline on-device

Running on the edge

Raspberry Pi 3
1GB RAM
1.4GHz 4xCPU
ARM v8
35\$

Intent recognition and processing

Running on the edge... in multiple rooms

Satellite

Example Target Hardware

Raspberry Pi 0
512MB RAM
1GHz CPU
ARM v6 + VFP
5\$

Wake word

Audio capture

Main device

Raspberry Pi 3
1GB RAM
1.4GHz 4xCPU
ARM v8
35\$

Intent recognition and processing

Real-time voice and convolutions

Real time voice versus image

Real time voice versus image

Real time voice versus image

Streaming

- Image Tensor: [width,height,depth] (299x299x3)
- Streaming audio: [time,feature] (∞, 40)
- Streaming is a must because:
 - Infinite input wont work
 - and... you can't wait anyway.

Recurring networks

- Naturally streaming over chunks
- DeepSpeech
- State management issue with infinite inputs

WaveNet

- A network family developed for artificial voice generation
- Better results on the wake word task (paper, patent pending)
- Big stack of small convolutions:
 - wide receptive field: end-to-end
 - affordable: reusable values

How to run it...

- Hardcode it
- Cajole TensorFlow (or Lite) into running it:
 - wire Variable2/Assign around the 48 convolution operators
 - then run batches through the network

Introducing...

tract

- Snips Neural Network inference engine
- Small CPU friendly (ARMv6 to ARMv8)
- OpenSource
- In Rust
- Is not TensorFlow

Tract is a Rust library

- Rust is Snips' go-to language for embedded software
 - Portability
 - Performance
 - Safety

TensorFlow support

- Read native TensorFlow format
- TensorFlow operator set is huge, and not specified
 - adding operators as needed
- More comprehensive than TensorFlow-Lite already

ONNX support

- Read native ONNX format
- ONNX has a specified operator set, provides test suite
- tract supports about 85% of ONNX test suite

tract is OpenSource

- tract is MIT/Apache-2
- no dependency under lawyer-scaring license

Neural Network Interpreter: Anatomy and issues

Minimum TensorFlow runner

- Parse TensorFlow protobuf format
- Inject input
- Cascade data through operators, repeat.

Optimising interpreter

- Parse TensorFlow protobuf format
- Type the network: tensors data types and shapes
- Declutter the network
- Propagate constants, reduce operator strength, ...
- "Codegen" logical operators to hardware ops
- Inject inputs
- Run the operators

Decluttering training networks

- WaveNet "Hey Snips": 3080 ops -> 267 ops
- Inception v3: 1655 ops -> ~500 ops
- DeepSpeech: 114 ops -> 54 ops

```
3 Source input_lengths
1 Const lstm_fused_cell/Const
 2 tf.Max lstm_fused_cell/Max
3 Cast lstm_fused_cell/ToInt64
  3 Cast lstm_fused_cell/ToIn:
4 Source input_node
5 Const transpose/perm
6 tf.Transpose transpose
7 Const Reshape/shape
8 tf.Reshape Reshape
9 Const h1
10 tf.Identity h1/read
11 Gemm MatMul
12 Const b1
13 tf.Identity b1/read
14 Add:Binary Add
15 Relu Relu
  14 Add::Binary Add

15 Relu Relu

16 Const Minimum/y

17 Min::Binary Minimum

18 Const h2

19 tf.Identity h2/read

20 Gemm MatMul_1
 20 Gemm MatMul_1
21 Const b2
22 tf.Identity b2/read
23 Add:Binary Add_1
24 Relu Relu_1
25 Const Minimum_1/y
26 Min::Binary Minimum_1
27 Const h3
28 tf.Identity h3/read
29 Gemm MatMul_2
30 Const b3
31 tf.Identity b3/read
32 Add::Binary Add_2
33 Relu Relu_2
34 Const Minimum_2/y
35 Min::Binary Minimum_2
  34 Const Minimum_2/y
35 Min::Binary Minimum_2

36 Const Reshape_1/shape
37 tf.Reshape Reshape_1

38 tf.VariableV2 previous_state_c
                    tf.Identity previous_state_c/read
                 40 tf.VariableV2 previous_state_h
                  - 41 tf.Identity previous_state_h/read
- 42 Const lstm_fused_cell/kernel
- 43 tf.Identity lstm_fused_cell/kernel/read
                 44 Const lstm_fused_cell/zeros/shape_as_tensor

45 Const lstm_fused_cell/zeros/Const

46 tf.Fill lstm_fused_cell/zeros

47 Const lstm_fused_cell/bias

48 tf.Identity lstm_fused_cell/bias/read
              49 tf.BlockLSTM lstm_fused_cell/BlockLSTM

50 Const lstm_fused_cell/SequenceMask/Const_1

51 Const lstm_fused_cell/SequenceMask/Const_2

52 Const lstm_fused_cell/SequenceMask/Const_2

53 tf.Range lstm_fused_cell/SequenceMask/Range

54 Const lstm_fused_cell/SequenceMask/ExpandDims/dim
             55 tf.ExpandDims lstm_fused_cell/SequenceMask/ExpandDims
56 Cast lstm_fused_cell/SequenceMask/Cast
57 Lesser::Binary lstm_fused_cell/SequenceMask/Cast_1
58 Cast lstm_fused_cell/SequenceMask/Cast_1
59 Const lstm_fused_cell/transpose/perm
60 tf.Transpose lstm_fused_cell/transpose
61 Const lstm_fused_cell/ExpandDims/dim
62 tf.ExpandDims lstm_fused_cell/ExpandDims
63 Const lstm_fused_cell/Tile/multiples
64 Tile lstm fused_cell/Tile
               64 Tile lstm_fused_cell/Tile
65 Mul::Binary lstm_fused_cell/mul
                    r 66 Const Reshape_2/shape
                 67 tf.Reshape Reshape_2
                68 Const h5
69 tf.Identity h5/read
70 Gemm MatMul_3
                          71 Const b5
72 tf.Identity b5/read
                     73 Add::Binary Add_3
74 Relu Relu_3
75 Const Minimum_3/y
76 Min::Binary Minimum_3
                77 Const h6
78 tf.Identity h6/read
79 Gemm MatMul_4
                  80 Const b6
81 tf.Identity b6/read
                  82 Add::Binary Add_4
83 Const raw_logits/shape
               84 tf.Reshape raw_logits
85 LayerSoftmax Softmax
66 Const lstm_fused_cell/ExpandDims_1/dim
               87 tf.ExpandDims lstm_fused_cell/ExpandDims_1
             89 tf.ConvatV2 lstm_fused_cell/concat
90 Const lstm_fused_cell/range/start
91 Const lstm_fused_cell/range/limit
92 Const lstm_fused_cell/range/delta
                         93 tf.Range lstm_fused_cell/range
     94 tf.Pack lstm_fused_cell/stack
95 tf.GatherNd lstm_fused_cell/GatherNd
     96 tf.Assign Assign_2
97 Const lstm_fused_cell/ExpandDims_2/dim
               F 99 Const lstm_fused_cell/concat_1/axis
        100 tf.ConvatV2 lstm_fused_cell/concat_1
              r 101 Const lstm_fused_cell/range_1/start
r 102 Const lstm_fused_cell/range_1/limit
r 103 Const lstm_fused_cell/range_1/delta
104 tf.Range lstm_fused_cell/range_1
   105 tf.Pack lstm_fused_cell/stack_1
106 tf.GatherNd lstm_fused_cell/GatherNd_1
  107 tf.Assign Assign_3
108 tf.Identity logits
109 Const zeros/shape_as_tensor
110 Const zeros/Const
111 tf.Fill zeros
  112 tf.Assign Assign
113 tf.Assign Assign_1
114 tf.Noop initialize_state
```



```
Const Const-117
                                            Source input_node
                                            PermuteAxes transpose
                                           3 Const Reshape/shape
                                           4 tf.Reshape Reshape
  Fully connected 1
                                            GemmUnaryA MatMul
                                            Add::UnaryA Add
                                           7 Relu Relu
                                           Min::UnaryA Minimum
  Fully connected 2
                                            GemmUnaryA MatMul_1
                                           10 Add::UnaryA Add_1
                                           11 Relu Relu_1
                                           12 Min::UnaryA Minimum_1
  Fully connected 3
                                           13 GemmUnaryA MatMul_2
                                           14 Add::UnaryA Add_2
                                           15 Relu Relu_2
                                           16 Min::UnaryA Minimum_2
                                           17 Const Reshape_1/shape
                                          18 tf.Reshape Reshape_1
                                           - 19 tf.VariableV2 previous_state_c
                                           <sub>「</sub> <mark>20</mark> tf.VariableV2 previous_state_h
                                            r 21 Const Const-118
                                             22 Const Const-119
                                                                    3 useless input parameters (all zeros)
                                              23 Const Const-120
                                              ┌ 25 Const Const-122
             LSTM Layer
                                           26 tf.BlockLSTM lstm_fused_cell/BlockLSTM 5 out of 7 outputs dropped
                                              Mul::UnaryA lstm_fused_cell/mul
                                             28 Const Reshape_2/shape
  Fully connected 4
                                              29 tf.Reshape Reshape_2
                                             30 GemmUnaryA MatMul_3
                                             31 Add::UnaryA Add_3
                                             32 Relu Relu_3
                                             33 Min::UnaryA Minimum_3
  Fully connected 5
                                             34 GemmUnaryA MatMul_4
                                             35 Add::UnaryA Add_4
                                             7 36 Const raw_logits/shape
                                            37 tf.Reshape raw_logits
                                            - 38 LayerSoftmax Softmax
                                             · 39 AddDims lstm_fused_cell/ExpandDims_1

√ 40 Const lstm_fused_cell/concat/axis

                                             41 tf.ConvatV2 lstm_fused_cell/concat
                                             r 42 Const Const-129
                                             43 tf.GatherNd lstm_fused_cell/GatherNd
                                           LSTM state
                                              45 AddDims lstm_fused_cell/ExpandDims_2
                                              - 46 Const lstm_fused_cell/concat_1/axis
    wiring
                                            47 tf.ConvatV2 lstm_fused_cell/concat_1
                                              48 Const Const-115
                                                tf.GatherNd lstm_fused_cell/GatherNd_1
                                          11 50 tf.Assign Assign_3
                                           51 tf.Identity logits
                                          52 Const Const-135
                                          <sup>⊥</sup> 53 tf.Assign Assign
                                           54 Const Const-134
                                          <sup>⊥</sup> 55 tf.Assign Assign_1
```

56 tf.Noop initialize_state

```
5 GemmUnaryA MatMul
6 Add::UnaryA Add
7 Relu Relu
8 Min::UnaryA Minimum
9 GemmUnaryA MatMul_1
10 Add::UnaryA Add_1
11 Relu Relu_1
12 Min::UnaryA Minimum_1
13 GemmUnaryA MatMul_2
14 Add::UnaryA Add_2
15 Relu Relu_2
16 Min::UnaryA Minimum_2
```

Bigger semantic transforms: Streaming

- Load, analyse, type original network
 - implies reasoning on the "streaming" dimension
- Translate operators to manipulate "pulses" of data:
 - most operators are actually unchanged
 - some need addition of a stateful op (e.g. conv on time axis)
 - some are impossible to translate (e.g. softmax on time axis)
- Produces a stateful network that operates over pulses

Challenge: Highly immature field

- Deep Learning revolution circa 2010
- TensorFlow introduced end of 2015
- Example: dilated convolutions re-discovered in 2016

Challenge: Frameworks are designed for training

- Most important contributors: Google, Facebook.
- Inference on cloud is comparatively easy.
- Mood may be changing: new Google Mobile ASR
- Available models are training oriented (declutter)

Challenge: Inference side is fragmented

- Google: Android NNAPI, TensorFlow Mobile, TensorFlow Lite
- Microsoft ONNX Runtime
- Apple CoreML and BNNS
- ARM NN SDK
- tract
- but also: TVM, TensorRT, NCNN

github.com/snipsco/tract

GDR BioComp 2019 — IRCICA — 2019-05-15

Mathieu Poumeyrol — Principal Engineer — Snips

@kalizoy

Class-based

hhhheeeeyyyy sssniiiiipssss

- Detects phones ("phonèmes" in french)
- Aggregate phone detections over 2 seconds to make a wake word decision
- Require "aligned" training data

Rust language for inference

- Portability write code once and cross-compile to any modern hardware architecture.
- **Performance -** high-level features without runtime performance penalty.
- Safety rustc compiler makes it difficult to put memoryunsafe code into a production environment.

Performance on Inception v3

- TensorFlow hello world
 - ImageNet challenge
 - 299x299 images -> 1000 categories
- Against TensorFlow-lite
- Official build runs on Raspi3 only

Performance on Snips Wake word (WaveNet)

- one feature every 10ms
- 8-wide pulse: one pass every 80ms
- no TensorFlow-Lite comparison...
 - no "pulse" mode
 - missing operators and modes (tanh, addn, 1d dilated convolution, ...)


```
use tract_core::prelude::*;
use tract_core::ndarray;
use tract_core::datum::Datum;
fn main() -> TractResult<()> {
    let mut model = tract_tensorflow::tensorflow().model_for_path("mobilenet_v2_1.4_224_frozen.pb")?;
    model.set_input_fact(0, TensorFact::dt_shape(f32::datum_type(), tvec!(1, 224, 224, 3)))?;
    let model = model.into_optimized()?;
    let plan = SimplePlan::new(&model)?;
    let image = image::open("grace_hopper.jpg").unwrap().to_rgb();
    let resized = image::imageops::resize(&image, 224, 224, ::image::FilterType::Triangle);
    let image: Tensor = ndarray:: Array4:: from_shape_fn((1, 224, 224, 3), |(_, y, x, c)| {
        resized[(x as _, y as _)][c] as f32 / 255.0
    }).into();
    let result = plan.run(tvec!(image))?;
    let best = result[0].to_array_view::<f32>()?.iter().cloned().enumerate().max_by(|a,b| a.1.partial_cmp(&b.1).unwrap());
    println!("result: {:?}", best);
    0k(())
```

```
| 5 | Operation: Conv::DepthWise<F32>| Name: MobilenetV2/expanded_conv/depthwise/depthwise
Real: 9.600 ms/i 12% User: 9.600 ms/i 12% Sys: 0.000 ms/i 0%
  +------
  | Input 0: Node #4/0 1x112x112x48xF32
  +-----
   Output 0: 1x112x112x48xF32
   | Attr padding: s: "SAME"
   | Attr dilations: list {i: 1 i: 1 i: 1 i: 1}
   | Attr strides: list {i: 1 i: 1 i: 1 i: 1}
   | Attr T: type: DT_FLOAT
   Attr data_format: s: "NHWC"
17 | Operation: Conv::DepthWise<F32>| Name: MobilenetV2/expanded_conv_1/depthwise/depthwise
                   Real: 7.232 ms/i 9% User: 7.232 ms/i 9% Sys: 0.000 ms/i 0%
   | Input 0: Node #16/0 1x112x112x144xF32
   +-----
   | Output 0: 1x56x56x144xF32
   | Attr strides: list {i: 1 i: 2 i: 2 i: 1}
   | Attr padding: s: "SAME"
    | Attr T: type: DT_FLOAT
    Attr dilations: list {i: 1 i: 1 i: 1 i: 1}
    Attr data_format: s: "NHWC"
| 29 | Operation: Conv::DepthWise<F32>| Name: MobilenetV2/expanded_conv_2/depthwise/depthwise
                   Real: 10.054 ms/i 12% User: 10.054 ms/i 12% Sys: 0.000 ms/i 0%
   | Input 0: Node #28/0 1x56x56x192xF32
   | Output 0: 1x56x56x192xF32
   | Attr T: type: DT_FLOAT
    | Attr padding: s: "SAME"
    Attr dilations: list {i: 1 i: 1 i: 1 i: 1}
    Attr strides: list {i: 1 i: 1 i: 1 i: 1}
    | Attr data_format: s: "NHWC"
| 54 | Operation: Conv::DepthWise<F32>| Name: MobilenetV2/expanded_conv_4/depthwise/depthwise
Real: 4.167 ms/i 5% User: 4.166 ms/i 5% Sys: 0.000 ms/i 0%
   +-----
   | Input 0: Node #53/0 1x28x28x288xF32
   | Output 0: 1x28x28x288xF32
   | Attr data_format: s: "NHWC"
    Attr dilations: list {i: 1 i: 1 i: 1 i: 1}
    Attr strides: list {i: 1 i: 1 i: 1 i: 1}
    Attr T: type: DT_FLOAT
    | Attr padding: s: "SAME'
| 67 | Operation: Conv::DepthWise<F32>| Name: MobilenetV2/expanded_conv_5/depthwise/depthwise
                   Real: 4.368 ms/i 5% User: 4.367 ms/i 5% Sys: 0.000 ms/i 0%
   | Input 0: Node #66/0 1x28x28x288xF32
   | Output 0: 1x28x28x288xF32
   +-----+
   | Attr strides: list {i: 1 i: 1 i: 1 i: 1}
    Attr T: type: DT_FLOAT
    Attr padding: s: "SAME'
    Attr data_format: s: "NHWC"
   Attr dilations: list {i: 1 i: 1 i: 1 i: 1}
   +-----+
```

Most time consuming operations:

Conv::DepthWise<F32> 17 calls: Real: 61.049 ms/i 73% User: 61.048 ms/i 73% Sys: 0.000 ms/i 0%

MatMulUnaryImplASimpleB 35 calls: Real: 11.925 ms/i 14% User: 11.925 ms/i 14% Sys: 0.000 ms/i 0%

Add::UnaryA 36 calls: Real: 3.455 ms/i 4% User: 3.453 ms/i 4% Sys: 0.001 ms/i 87%

tf.FusedBatchNorm 17 calls: Real: 3.286 ms/i 4% User: 3.285 ms/i 4% Sys: 0.000 ms/i 4%

Relu6 35 calls: Real: 2.592 ms/i 3% User: 2.592 ms/i 3% Sys: 0.000 ms/i 9%

Entire network performance: Real: 87.011 ms/i User: 87.005 ms/i Sys: 0.001 ms/i

Accounted by ops: Real: 83.129 ms/i 96% User: 83.127 ms/i 96% Sys: 0.001 ms/i 100%

```
Most time consuming operations:

Conv::DepthWise<F32> 17 calls: Real: 61.049 ms/i 73% User: 61.048 ms/i 73% Sys: 0.000 ms/i 0%

MatMulUnaryImplASimpleB 35 calls: Real: 11.925 ms/i 14% User: 11.925 ms/i 14% Sys: 0.000 ms/i 0%

Add::UnaryA 36 calls: Real: 3.455 ms/i 4% User: 3.453 ms/i 4% Sys: 0.001 ms/i 87%

tf.FusedBatchNorm 17 calls: Real: 3.286 ms/i 4% User: 3.285 ms/i 4% Sys: 0.000 ms/i 4%

Relu6 35 calls: Real: 2.592 ms/i 3% User: 2.592 ms/i 3% Sys: 0.000 ms/i 9%

Entire network performance: Real: 87.011 ms/i User: 87.005 ms/i Sys: 0.001 ms/i
```

Accounted by ops: Real: 83.129 ms/i 96% User: 83.127 ms/i 96% Sys: 0.001 ms/i 100%

```
| 220 | Operation: MatMulUnaryImplASimpleB| Name: MobilenetV2/Logits/Conv2d_1c_1x1/Conv2D |
| Input 0: Node #219/0 1x1x1x1792xF32 |
| Output 0: 1x1x1x1001xF32 |
| MM m:1 k:1792 n:1001 fma(16x6) |
| Attr dilations: list {i: 1 i: 1 i: 1 i: 1} |
| Attr use_cudnn_on_gpu: b: true |
| Attr T: type: DT_FLOAT |
| Attr data_format: s: "NHWC" |
| Attr padding: s: "SAME" |
| Attr strides: list {i: 1 i: 1 i: 1 i: 1} |
| FMA(F32) 1793792
```

A few critical optimisation

Cortex A53 (Raspberry Pi 3 B 1.2, Raspbian)

What's next

WIP: MobileNet v2 and DepthWise Conv

FFI interfaces

ONNX full coverage and backend interface

Kaldi support

But also...

- Be as good as TensorFlow-Lite on as many devices/ networks combinations as possible
 - unsafe code is good!
- Reason more as an interpreter:
 - ReLu(x) = Max(x,0), ReLu6(x) = Min(Max(x,0), 6), ReLu20
 - sigmoid, tanh, erf: polynomial(x, coefs1) / polynomial(x, coefs2))