Microwave neural processing and broadcasting with spintronic nano-oscillators

Philippe Talatchian¹, Miguel Romera¹, Sumito Tsunegi², Flavio Abreu Araujo¹, Vincent Cros¹, Paolo Bortolotti¹, Juan Trastoy¹, Alice Mizrahi¹, Kay Yakushiji², Akio Fukushima², Hitoshi Kubota², Shinji Yuasa², Maxence Ernoult^{1,3}, Damir Vodenicarevic³, Tifenn Hirtzlin³, Nicolas Locatelli³, Damien Querlioz³,

Julie Grollier¹

¹CNRS/Thales, France

²AIST, Japan

³C2N, France

Neural networks run on unoptimized hardware

Entangling memory and processing allows for fast and energy efficient computing

Digital computer CPUs, GPUs, TPUs, FPGAs memory data processing memory data processing memory totata processing

100 W/cm²

20 W in total !

Can we build small neuromorphic chips that run deep neural networks ?

Hundred millions of neurons and synapses in a 1 cm² chip \rightarrow Each device smaller than 1 μ m²

Future AI will be massively interconnected

Brain: 10⁴ synapses/neurons

Moritz Helmstaedter lab, retina flight 2013

Main trend : CMOS neurons + Memristive synapses

10 000 synapses per neuron ?

Strukov and Williams, PNAS 106, 20155 (2009)

Wireless deep learning through RF communications

Magnetic nano-oscillators are non-linear nanoradios

Nanoscale, fast (GHz), non-linear and easily measurable

Same structure as magnetic memories

N. Locatelli, V. Cros and J. Grollier, Spin-torque building blocks, Nature Mat. 13, 11 (2014)

Due to its stability and non-linearity, a single magnetic oscillator can emulate an assembly of neurons and perform neuromorphic computing

Spoken digit recognition through reservoir computing

J. Torrejon, M. Riou, F. Abreu Araujo et al, Nature 547, 428 (2017)

Spin-torque nano-oscillators have a high tunability : they are radio-receivers

Enhanced sync ranges

A. Slavin and V. Tiberkevich, IEEE TM 45, 1875 (2009)

The oscillators ability to mutually interact opens the path to RF on-chip communication between neuron layers

Vowels classification with spin-torque oscillator neural network

Magnetic

M. Romera, P. Talatchian et al, Nature 563, 230 (2018)

Outputs: synchronized states

We summarize all these measurements in a map where the different synchronization states have different colors

For classification, all the points corresponding to one vowel should fall in a single synchronization region

We train the network by tuning the currents through the oscillators according to an online learning rule

The oscillator network has a better recognition rate than a multilayer perceptron with an equivalent number of trained parameters

What's next ?

Perspectives: RF deep learning with spintronic nanodevices

Arrays of more than 300 spin-torque nano-oscillators can be built to obtain such synchronization state maps

Perspectives: RF deep learning with spintronic nanodevices

Spintronics is multifunctional: we can create new devices

Binary memories

Multiple materials for synapses

Ferromagnets

Resistance (D)

Antiferromagnets

Ma, Endoh *et al* 2016 *Jpn. J. Appl. Phys.* **55** 04EF15 S. Lequeux, **JG** et al *Sci. Rep*. 6:31510 (2016)

S. Fukami et al, *Nat. Mater.* 15, 535 (2016)

-50-40-30-20-10 0 10 20 30 40 50

Channel current, I_{CH} (mA)

P. Wadley et al, Science (2016)

Multiple control means: spin torques, spin-orbit torques, magneto-elastic, magnetoelectric effects

Spintronics nanodevices can emit solitons, magnons and microwaves, and go 3D for neuromorphic computing !

A. Fernandez- Pacheco et al, Nature Com 8:15756 (2017)

J. Grollier et al, PIEEE 104, 2024 (2016)

J. Torrejon et al, Nature 547, 428 (2017) A. Mizrahi et al, Nature Com. 9:1533 (2018) M. Romera et al Nature 563, 230 (2018)