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Project context
• Massive amounts of data
• Always-on sensing

EEG

Images/Videos

Audio/Speech

To process locally
OR 

to transfer to main 
computation unit (cloud)

Small, cheap, no battery replacement
→ Towards Near-Sensor Computing
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Application fields
• Audio processing

‐ Voice Activity Detection in noisy context
‐ Vowels, words, language recognition
‐ Specific feature extraction

• Human‐body signal classifications
‐ ECG, EEG, etc…

• Vibration and movement recognition

• Image processing
‐ Motion‐triggered cameras
‐ Face detection / Owner‐activated devices

• Automotive



Project objectives

4

Standard scheme:

Non relevant data is processed if it exceeds the threshold…



Project objectives

Near-sensor Computing: process relevant data as close as the 
sensor as possible
• Aggregation of a lower amount of data
• Need of energy‐hungry processing during a lower amount 

of time
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Standard scheme:



Envisionned demonstration

• Focus on audio applications: voice activity detection, 
vowels recognition, keyword detection.

• On-chip event-driven feature extraction
• Small-scale neuro-inspired classification unit
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Feature extraction
Objective: extract energy in different frequency bands
• Analog filter bank [Badami, JSSC 2016]

‐ Low energy
‐ Non configurable filters
‐ High silicon area

• Digital FFT [Price, JSSC 2017] 
‐ Configurability
‐ Audio fidelity
‐ Latency
‐ High complexity
‐ High energy
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Feature extraction
• Digital filter bank

‐ Configurability
‐ Low latency
‐ Implementation capability

Requires preliminary always-on A‐to‐D conversion and signal 
processing of the complete spectrum

Event-driven / Clockless ?
→ Advantages of both analog and digital implementaƟons
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TimeContinuous (CT) Discrete (DT)

Amplitude

Continuous (CA)

Discrete (DA)
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Classical analog
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DT CA
Sampled analog systems
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DT DA

Digital Signal Processors
Microprocessors

CT DA

Continuous-Time
Digital Signal Processing

(CT DSP)

Opportunity: Continuous-Time 
Digital Signal Processing (CTDSP)
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Continuous-Time (CT) advantages
• Event-driven system

‐ No clock
‐ Event‐driven power 

consumption

• CMOS Digital System
‐ Configurability
‐ Scalability
‐ High integration level
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[Kurchuk, JSSC 2012]



Continuous-Time (CT) advantages
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• CMOS Digital System
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‐ Scalability
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Classification
• Detection of a small number of specific patterns: voice 

activity, vowels, specific sounds, etc.

• Limited amount of features → limited amount of 
computing units (neurons)

• Embedded environment: energy and complexity 
requirements

→ Towards a binarized, small-scale classifier with 
determined data storage
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Opportunity: Small-scale classifiers
• Only necessary functions implemented

‐ Online inference only, towards binary synaptic weights
‐ Activation function: e.g. local Winner‐Takes‐All

• Asynchronous behavior → Event‐driven compatible

• Short reacƟon Ɵme → Real‐time compatible

• Envisioned classifier models:
‐ LSTM
‐ Spiking neural networks
‐ Clique‐based networks
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Several organizations for the neurons:

Neural networks models

Feedforward neural 
networks

• Full connectivity from a 
layer to the next one

• Unidirectional links
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Neural networks models

Recurrent neural 
networks (Hopfield)

• Full connectivity
between the neurons

• Bidirectional links

Several organizations for the neurons:
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Neural networks models

Clique-based neural 
networks

• Connections between
neurons only through
cliques

• Bidirectional links

Several organizations for the neurons:
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Neural networks models

[Gripon and Berrou, TNNLS 2011]

Several organizations for the neurons:

Clustered clique-based
networks

• Division in clusters

• Connections between
neurons from different
clusters
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Structure of a neuron:

Feedforward and recurrent 
neural networks

Synaptic weights

Inside a neuron
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Structure of a neuron:

Less complex activation function: WTA rule

→ comparison + acƟvaƟon

Willshaw‐Palm and clique‐
based neural networks

Binary synapses

Inside a neuron
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Implementation choices

• Binary information exchanged by 
the neurons
→ Communication: digital 

signals

• Simple analog circuits adapted to 
the functions in a neuron
→ Computations: analog 

signals

→ Mixed-signal asynchronous 
implementation

Cluster 1 Cluster 2

Cluster 3

∑

∑

∑
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What about circuit ?

V‐to‐I conversion
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What about circuit ?

Current addition
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What about circuit ?

Current‐based WTA
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What about circuit ?

Threshold activation
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What about circuit ?
Schematic of a cluster of 4 neurons:
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Network topologies

• Cluster matrix

• Hardwired
connections 
between
neurons

• Fastest response

• No flexibility

SynapsesNeurons
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Network topologies

Connections 
memory

SIPO register

SIPO register

SIPO registerSIPO registerSIPO register

SIPO register

SIPO register SIPO register

SIPO register

State memory and routing unit 

• Connection using
a routing unit

• Connections 
store in an 
external memory
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Network topologies

Connections 
memory

SIPO register

State memory and routing unit 

• Iteration of the 
process on one 
cluster

• Flexibility: 
topology changes 
with the number
of iterations

• Latency
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Hardware realizations (1/2)

Technology node 65-nm CMOS

Silicon area occupation 0,019 mm²

Supply voltage 1 V

Synaptic current 300 nA

Static current 5,4 µA

Network response time 58 ns

Energy consumption per 
synaptic event per neuron 48 fJ

• 5 cluster of 6 neurons
=> 30 neurons

• Hardware connections
=> asynchronous

• Control signals generated
by an FPGA

[Larras, TCAS‐I 2016]
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Hardware realizations (2/2)

Technology node 65-nm CMOS

Silicon area occupation 0,21 mm²

Supply voltage 1 V

Synaptic current 300 nA

Static current 23,4 µA

Cluster response time 83 ns

Energy consumption per 
synaptic event per neuron 115 fJ

• One cluster of 128 neurons
• Time multiplexing
• Maximum of 3968 

emulated neurons
• Driven by an FPGA

[Larras, TCAS‐I 2019]



Envisionned scheme
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Envisionned scheme

• One feature = one cluster
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75 Hz 324 Hz 1,5 kHz 3,2 kHz 4,8 kHz

frequency



Envisionned scheme

• One feature = one cluster
• One neuron per quantization level
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Envisionned scheme

• One feature = one cluster
• One neuron per quantization level
• Instantaneous detection of speech formants (cliques)
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« [ə] »

75 Hz 324 Hz 1,5 kHz 3,2 kHz 4,8 kHz

frequency



Further opportunities
• Asynchronous formant extraction

‐ Applications: voice activity detection, phonemes 
detection

• Data reduction
‐ From 2‐D data to 1‐D data
‐ Use with LSTM stage to extract keywords

• Circuit integrability ?

• Compatibility with real time ?
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Challenges
• Feature extraction unit

‐ Event‐driven processing with no clocks is difficult to 
handle and design (concepts, tools)

‐ Timing is critical…

• Classification unit
‐ Generic topology vs. diversity of applications
‐ Bridging the gap from theory to efficient hardware

• Latency and energy consumption!

• Integration in advanced CMOS technology
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Conclusion

• ANR LEOPAR project targeting a breakthrough in the 
audio processing domain, in terms of energy 
efficiency

• Circuit implementation leveraging analog and digital 
domains

• Targeted hardware demonstration: hardware 
prototype and integrated circuit in 28‐nm FDSOI 
CMOS
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Thank you !

Any questions ? Feel free to ask or send an e‐mail to
benoit.larras@yncrea.fr
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