

LEOPAR: Low-Energy On-chip Pre-processing for Activity Recognition

Benoit LARRAS, Kévin HÉRISSÉ, Antoine FRAPPÉ, Bruno STEFANELLI, Andreas KAISER

14/05/2019 - Colloque du GdR BioComp

sentralelille,

Project context

- Massive amounts of data
- Always-on sensing

Small, cheap, no battery replacement

→ Towards Near-Sensor Computing

Application fields

- Audio processing
 - Voice Activity Detection in noisy context
 - Vowels, words, language recognition
 - Specific feature extraction
- Human-body signal classifications
 - ECG, EEG, etc...
- Vibration and movement recognition
- Image processing
 - Motion-triggered cameras
 - Face detection / Owner-activated devices
- Automotive

Project objectives

Standard scheme:

Non relevant data is processed if it exceeds the threshold...

Project objectives

Near-sensor Computing: process **relevant** data **as close as the sensor** as possible

- Aggregation of a lower amount of data
- Need of energy-hungry processing during a lower amount of time

Envisionned demonstration

- Focus on audio applications: voice activity detection, vowels recognition, keyword detection.
- On-chip event-driven feature extraction
- Small-scale neuro-inspired classification unit

Feature extraction

Objective: extract energy in different frequency bands

- Analog filter bank [Badami, JSSC 2016]
 - Low energy
 - Non configurable filters
 - High silicon area

- Configurability
- Audio fidelity
- Latency
- High complexity
- High energy

Feature extraction

- Digital filter bank
 - Configurability
 - Low latency
 - Implementation capability

Requires **preliminary always-on** A-to-D conversion and signal processing of the complete spectrum

Event-driven / Clockless ?

→ Advantages of both analog and digital implementations

Opportunity: Continuous-Time Digital Signal Processing (CTDSP)

Continuous-Time
Digital Signal Processing
(CT DSP)

Digital Signal Processors
Microprocessors

Opportunity: Continuous-Time Digital Signal Processing (CTDSP)

(CT DSP)

- Event-driven system
 - No clock
 - Event-driven power consumption

- CMOS Digital System
 - Configurability
 - Scalability
 - High integration level

- Event-driven system
 - No clock
 - Event-driven power consumption

- CMOS Digital System
 - Configurability
 - Scalability
 - High integration level

- Event-driven system
 - No clock
 - Event-driven power consumption

- CMOS Digital System
 - Configurability
 - Scalability
 - High integration level

[Kurchuk, JSSC 2012]

Event-driven system

- No clock
- Event-driven power consumption

CMOS Digital System

- Configurability
- Scalability
- High integration level

EQ: Energy Quantifier

Classification

- Detection of a small number of specific patterns: voice activity, vowels, specific sounds, etc.
- Limited amount of features → limited amount of computing units (neurons)
- Embedded environment: energy and complexity requirements
- → Towards a binarized, small-scale classifier with determined data storage

Opportunity: Small-scale classifiers

- Only necessary functions implemented
 - Online inference only, towards binary synaptic weights
 - Activation function: e.g. local Winner-Takes-All
- Asynchronous behavior → Event-driven compatible
- Short reaction time → Real-time compatible
- Envisioned classifier models:
 - LSTM
 - Spiking neural networks
 - Clique-based networks

Several organizations for the neurons:

Feedforward neural networks

- Full connectivity from a layer to the next one
- Unidirectional links

Several organizations for the neurons:

Recurrent neural networks (Hopfield)

- Full connectivity between the neurons
- Bidirectional links

Several organizations for the neurons:

Clique-based neural networks

- Connections between neurons only through cliques
- Bidirectional links

Several organizations for the neurons:

Clustered clique-based networks

- Division in clusters
- Connections between neurons from different clusters

[Gripon and Berrou, TNNLS 2011]

Inside a neuron

Structure of a neuron:

Inside a neuron

Structure of a neuron:

Less complex activation function: WTA rule

→ comparison + activation

Implementation choices

- Binary information exchanged by the neurons
 - Communication: digital signals
- Simple analog circuits adapted to the functions in a neuron
 - → Computations: analog signals
 - → Mixed-signal asynchronous implementation

Schematic of a cluster of 4 neurons:

Network topologies

- Cluster matrix
- Hardwired connections between neurons
- Fastest response
- No flexibility

Network topologies

UMR CNRS 8520

30

Network topologies

stitut d'Electronique, de Microélectronique

- Iteration of the process on one cluster
- Flexibility: topology changes with the number of iterations
- Latency

31

Hardware realizations (1/2)

- 5 cluster of 6 neurons> 30 neurons
- Hardware connections=> asynchronous
- Control signals generated by an FPGA

Technology node	65-nm CMOS
Silicon area occupation	0,019 mm²
Supply voltage	1 V
Synaptic current	300 nA
Static current	5,4 μΑ
Network response time	58 ns
Energy consumption per synaptic event per neuron	48 fJ

[Larras, TCAS-I 2016]

Hardware realizations (2/2)

- One cluster of 128 neurons
- Time multiplexing
- Maximum of 3968 emulated neurons
- Driven by an FPGA

Technology node	65-nm CMOS
Silicon area occupation	0,21 mm²
Supply voltage	1 V
Synaptic current	300 nA
Static current	23,4 μΑ
Cluster response time	83 ns
Energy consumption per synaptic event per neuron	115 fJ

[Larras, TCAS-I 2019]

• One feature = one cluster

- One feature = one cluster
- One neuron per quantization level

- One feature = one cluster
- One neuron per quantization level
- Instantaneous detection of speech formants (cliques)

Further opportunities

- Asynchronous formant extraction
 - Applications: voice activity detection, phonemes detection
- Data reduction
 - From 2-D data to 1-D data
 - Use with LSTM stage to extract keywords
- Circuit integrability?
- Compatibility with real time ?

Challenges

Feature extraction unit

- Event-driven processing with no clocks is difficult to handle and design (concepts, tools)
- Timing is critical...

Classification unit

- Generic topology vs. diversity of applications
- Bridging the gap from theory to efficient hardware
- Latency and energy consumption!
- Integration in advanced CMOS technology

Conclusion

- ANR LEOPAR project targeting a breakthrough in the audio processing domain, in terms of energy efficiency
- Circuit implementation leveraging analog and digital domains
- Targeted hardware demonstration: hardware prototype and integrated circuit in 28-nm FDSOI CMOS

Thank you!

Any questions? Feel free to ask or send an e-mail to benoit.larras@yncrea.fr

