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How can a developing agent 
autonomously learn a 

good model of the world?



Claude E. Shannon, 1916 - 2001 

A mathematical Theory 
of Communication (1948)



• Efficient Coding Hypothesis: biological sensory systems 
exploit redundancies in the sensory signals to encode 
information from the environment more efficiently (Attneave 
1954, Barlow 1961, Laughlin 1981, Linsker 1988, Attick 1992, ...) 

• Sparse Coding: sensory systems employ representations 
with few active neurons for any given stimulus (Földiák 1990, 
Olshausen&Field 1996, Bell&Sejnowski 1997, Rao&Ballard 1999, ...)

Sparse Coding 
Algorithm
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Active Efficient Coding

• reinforcement signal encodes a measure of coding 
efficiency (intrinsically motivated learning, cf. Schmidhuber, 1991, 
2009; Oudeyer 2007; Gottlieb et al., 2013) 

• allows fully self-calibrating active perception systems

efficient
coding
model

reinforcement
learner

motor command

reinforcement signal
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Fig. 1. Model overview. A The agent looking at the object plane in OpenEyeSim. B One image is generated per eye. Binocular patches are extracted
in a coarse scale (green boxes) and a fine scale (yellow boxes) with different resolutions. These patches are encoded by activations of basis functions via
sparse coding and combined with the muscle activations to generate a state vector (black arrows). While this vector is fed into the reinforcement learning
architecture, the sparse coding step also generates a reconstruction error that indicates the efficiency of encoding. We use this signal as reward (blue arrow)
to train the critic, which in turn evaluates states to teach the actor (light blue arrow). Finally, the actor generates changes in muscle activations (red arrow),
which result in rotations of the eyeballs and a restart of the perception-action cycle.

was the man made section of the McGill Calibrated Color
Image Database [15], that consists of outdoor scenes in
urban environments. The agent is modeled in the VE by
two eyes at a height of 1.7m with an interocular distance
of dE = 5.6 cm. Two cameras represent eyes which record
the scene the agent is looking at. The stimulus is presented
on a 3m ⇥ 3m plane perpendicular to the gaze direction,
which is positioned from 0.5m to 6m in front of the agent.
Each visual stimulus has a resolution of 1920 px⇥ 1920 px.
The size of the plane was chosen such that for each camera
image pixel there is a correspondence of at least 4 px on the
stimulus plane to reduce aliasing effects.

As the stimulus position is always vertically and horizon-
tally aligned with the eye level of the agent, it is sufficient to
just include the medial rectus and the lateral rectus, which
are rotating the eye around its yaw axis. A landscape scene
is used as the background of the VE to prevent the agent
from receiving trivial inputs when diverging the eyes from
the object plane.

Image Processing
The first stage of the algorithm starts by rendering the

simulated environment from the two virtual cameras corre-
sponding to the left and right eye (each 320 px ⇥ 240 px,
covering 50� of visual angle horizontally, with a focal length
of F = 257.34 px).

Since the use of multiple scales leads to the ability to
cope with very different disparity ranges and contributes
to the robustness of the system [2], we extract two sub-
windows with different resolutions: A coarse scale image,
which corresponds to 128 px⇥ 128 px in the original image
and is down-sampled by a factor of 4 via a Gaussian pyramid,
and a fine scale image, which corresponds to 40 px⇥ 40 px,
without being down-sampled. Patches of size 8 px⇥8 px from
both scales are extracted with a stride of 4 px and normalized
to have zero mean and unit norm. Corresponding patches
from the left and right image (see Fig. 1) are combined to

form 16 px⇥8 px binocular patches. The previously described
parameters were chosen as a trade-off between computational
feasibility and biological data concerning the density of
photoreceptors and size of ganglion receptive fields on the
human retina [16], [17]: Covering a visual angle of 8.8� the
fine scale corresponds to the central and para-central visual
field and the coarse scale with 27.9� to the near peripheral
field of view. By down-sampling the coarse scale, we mimic
the decreasing resolution towards the periphery.

Feature Extraction via Sparse Coding
The following step comprises the encoding of the image

patches by a sparse coding model. For each scale S 2 {c, f}
there is a separate dictionary BS of binocular basis functions
�S,i, where |Bs| = 400. There exist |pf | = 81 binocular
image patches for the fine scale and |pc| = 49 patches for the
coarse scale. A set of 10 binocular basis functions is used to
encode each binocular patch pS,j . The �S,i are chosen by the
matching pursuit algorithm [18], which tries to yield the best
approximation p̂S,j of a patch by a sparse linear combination
of basis functions from the respective dictionary:

p̂S,j =

|BS |X

i=1

j

S,i
�S,i , (1)

where the vector of activations j

S
for each patch is only

allowed to have 10 non-zero entries.
We calculate the error of this approximation, the recon-

struction error ES , as the squared sum of all differences
between all patches and their approximations, divided by the
total energy in the original patches [2]:

ES =

|pS |X

j=1

||pS,j � p̂S,j ||2

||pS,j ||2
. (2)

The total reconstruction error E is defined as the sum of
the reconstruction errors over the two scales: E = Ec +Ef .

• Sparse Coding: matching pursuit 
algorithm with gradient descent 
learning (Mallat & Zhang, 1993)

• Reinforcement Learning: 
CACLA+VAR algorithm (Van Hasselt 
& Wiering, 2007)
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in a coarse scale (green boxes) and a fine scale (yellow boxes) with different resolutions. These patches are encoded by activations of basis functions via
sparse coding and combined with the muscle activations to generate a state vector (black arrows). While this vector is fed into the reinforcement learning
architecture, the sparse coding step also generates a reconstruction error that indicates the efficiency of encoding. We use this signal as reward (blue arrow)
to train the critic, which in turn evaluates states to teach the actor (light blue arrow). Finally, the actor generates changes in muscle activations (red arrow),
which result in rotations of the eyeballs and a restart of the perception-action cycle.
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two eyes at a height of 1.7m with an interocular distance
of dE = 5.6 cm. Two cameras represent eyes which record
the scene the agent is looking at. The stimulus is presented
on a 3m ⇥ 3m plane perpendicular to the gaze direction,
which is positioned from 0.5m to 6m in front of the agent.
Each visual stimulus has a resolution of 1920 px⇥ 1920 px.
The size of the plane was chosen such that for each camera
image pixel there is a correspondence of at least 4 px on the
stimulus plane to reduce aliasing effects.

As the stimulus position is always vertically and horizon-
tally aligned with the eye level of the agent, it is sufficient to
just include the medial rectus and the lateral rectus, which
are rotating the eye around its yaw axis. A landscape scene
is used as the background of the VE to prevent the agent
from receiving trivial inputs when diverging the eyes from
the object plane.

Image Processing
The first stage of the algorithm starts by rendering the

simulated environment from the two virtual cameras corre-
sponding to the left and right eye (each 320 px ⇥ 240 px,
covering 50� of visual angle horizontally, with a focal length
of F = 257.34 px).

Since the use of multiple scales leads to the ability to
cope with very different disparity ranges and contributes
to the robustness of the system [2], we extract two sub-
windows with different resolutions: A coarse scale image,
which corresponds to 128 px⇥ 128 px in the original image
and is down-sampled by a factor of 4 via a Gaussian pyramid,
and a fine scale image, which corresponds to 40 px⇥ 40 px,
without being down-sampled. Patches of size 8 px⇥8 px from
both scales are extracted with a stride of 4 px and normalized
to have zero mean and unit norm. Corresponding patches
from the left and right image (see Fig. 1) are combined to

form 16 px⇥8 px binocular patches. The previously described
parameters were chosen as a trade-off between computational
feasibility and biological data concerning the density of
photoreceptors and size of ganglion receptive fields on the
human retina [16], [17]: Covering a visual angle of 8.8� the
fine scale corresponds to the central and para-central visual
field and the coarse scale with 27.9� to the near peripheral
field of view. By down-sampling the coarse scale, we mimic
the decreasing resolution towards the periphery.

Feature Extraction via Sparse Coding
The following step comprises the encoding of the image

patches by a sparse coding model. For each scale S 2 {c, f}
there is a separate dictionary BS of binocular basis functions
�S,i, where |Bs| = 400. There exist |pf | = 81 binocular
image patches for the fine scale and |pc| = 49 patches for the
coarse scale. A set of 10 binocular basis functions is used to
encode each binocular patch pS,j . The �S,i are chosen by the
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approximation p̂S,j of a patch by a sparse linear combination
of basis functions from the respective dictionary:
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where the vector of activations j

S
for each patch is only
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Learned encoding of stereo patches
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Alternate Rearing Conditions
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Fig. 2. Input scenarios and learned receptive fields. Left: Illustration of the
input under di↵erent rearing conditions. In the orthogonal case left and right eye inputs
are filtered with kernels rotated by 90 degrees. In the case of monocular deprivation
the right eye is blurred. Right: Representative examples of binocular BFs for the fine
and coarse scale learned under the di↵erent rearing conditions. For each BF the left eye
and right eye patch are aligned vertically. In each case, the BFs used most frequently
by the sparse coding algorithm are shown.
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where �x/y represent the standard deviation in the horizontal/vertical direction.
For example, a kernel with large �x will blur any vertical edges such that the

Blurring the input along the
x and/or y-direction:

Klimmasch et al., SAB 2018 (best paper award); Klimmasch et al., in preparation
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Fig. 2. Input scenarios and learned receptive fields. Left: Illustration of the
input under di↵erent rearing conditions. In the orthogonal case left and right eye inputs
are filtered with kernels rotated by 90 degrees. In the case of monocular deprivation
the right eye is blurred. Right: Representative examples of binocular BFs for the fine
and coarse scale learned under the di↵erent rearing conditions. For each BF the left eye
and right eye patch are aligned vertically. In each case, the BFs used most frequently
by the sparse coding algorithm are shown.
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disparity tuning and 
vergence eye movements 

motion tuning and pursuit 
eye movements 

Zhang et al. 2014, 2016; Teulière et al. 2014; Narayan et al. 2014

How general is Active Efficient 
Coding?
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Learning Environment

Lelais et al., submitted
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• Sparse Coding: matching pursuit algorithm with gradient 
descent learning (Mallat & Zhang, 1993)

• Reinforcement Learning: natural actor critic algorithm 
with discrete actions (Bhatnagar et al., 2009)
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Learning Performance

Lelais et al., submitted
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speed: × 2.4

Lelais et al., submitted
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What limits the performance?

NFS: no fine scale (sensory limitation)
CAS: coarse action set (motor limitation)
STD: standard configuration

Lelais et al., submitted
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Are there also internal limitations?

self-improvement until system hits a
sensory, motor, or internal limitation

Lelais et al., submitted



Discussion

• Active Efficient Coding: „Move your sense organs to 
make sensory encoding as efficient as possible!“ 

• self-calibration: of a range of eye movements 
– vergence & pursuit 
– but also: optokinetic nystagmus, torsion, accommodation 

• general: applicable to other sensory modalities
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Amblyopia:
What causes derailed development?
Can we develop better treatment methods?

Outlook 1: medical applications

Eckmann et al., submitted; Schneider et al., in preparation



Outlook 2: event-based cameras

• Advantages of new sensors: low power (<10 mW), low 
latency (> 10,000 fps), high dynamic range (> 120 dB) 

• Funding: French Tech Chair (Université Clermont Auvergne)
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ONBOARD PROPHESEE REFERENCE SYSTEM

THE FIRST 
EVENT-BASED CAMERA 
WITH NEUROMORPHIC ALGORITHMS

ONBOARD IS A FLEXIBLE REFERENCE SYSTEM THAT BRINGS THE POWER 
OF PROPHESEE’S HIGH-SPEED AND ROBUST VISION TO SERVE YOUR 
APPLICATION IN RAPID PRESENCE AND OBJECT DETECTION, OBJECT 
TRACKING AND INSPECTION.

VGA event-based camera
System latency below 10ms
IMU
Wide connectivity
Quad-core @1.5GHz
On-board programming
MIPI CSI-2 interface

APPLICATIONS
• High speed tracking
• High speed inspection and counting
•	Motion	detection	and	classification
•  Motion segmentation

HIGHLIGHTS
• Integrates the NEW Prophesee 3rd generation VGA camera module into 

a powerful reference vision system based upon the industry standard 
Qualcomm® Snapdragon™

• High speed event-based vision usage assembled with Linux
• Comprehensive connectivity including Ethernet, USB, HDMI ,WI-FI for 

versatile system integration
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PhD position in Clermont-Ferrand available!

Prophesee



Thank You!



Adding Overt Attention
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Binocular saliency mechanism: look at the most surprising 
location given your current „world“ model

Bruce & Tsotsos, 2009; Zhu et al., 2017



Zhu et al., ICDL 2017



Test on physical iCub

α

25-85cm
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