Active Efficient Coding

for building self-calibrating vision systems

Jochen Triesch
Frankfurt Institute
for Advanced Studies &
Goethe Univ. Frankfurt

Infant Development

How can a developing agent autonomously learn a good model of the world?

- Efficient Coding Hypothesis: biological sensory systems exploit redundancies in the sensory signals to encode information from the environment more efficiently (Attneave 1954, Barlow 1961, Laughlin 1981, Linsker 1988, Attick 1992, ...)
- Sparse Coding: sensory systems employ representations with few active neurons for any given stimulus (Földiák 1990, Olshausen&Field 1996, Bell&Sejnowski 1997, Rao&Ballard 1999, ...)

Active Efficient Coding

C. Rothkopf

C. Teulière

B. Shi

M. Fronius

S. Jeong

L. Lonini

V. Narayan

T. Chandrapala

S. Forestier

A. Priamikov S. Eckmann I. Schneider L. Klimmasch A. Lelais

C. Wilmot

Active Efficient Coding

- reinforcement signal encodes a measure of coding efficiency (intrinsically motivated learning, cf. Schmidhuber, 1991, 2009; Oudeyer 2007; Gottlieb et al., 2013)
- allows fully self-calibrating active perception systems

vergence pursuit

The case of binocular vision

OpenEyeSim - a platform for biomechanical modeling of oculomotor control

- Sparse Coding: matching pursuit algorithm with gradient descent learning (Mallat & Zhang, 1993)
- Reinforcement Learning:
 CACLA+VAR algorithm (Van Hasselt & Wiering, 2007)

1 pixel = 0.22°

Learned encoding of stereo patches

original binocular image

stereo patches:

L

sparse encoding:

$$\begin{pmatrix} I_{i,L} \\ I_{i,R} \end{pmatrix} \approx \sum_{n=1}^{N} a_{i,n}(t) \begin{pmatrix} \phi_{n,L}(t) \\ \phi_{n,R}(t) \end{pmatrix}$$

learned stereo-basis functions

tuned to zero disparity

tuned to non-zero disparity

monocular

Alternate Rearing Conditions

Blurring the input along the x and/or y-direction:

$$K_{\sigma_x,\sigma_y}(x,y) = \exp\left(-\left(\frac{x^2}{2\sigma_x^2} + \frac{y^2}{2\sigma_y^2}\right)\right)$$

Klimmasch et al., SAB 2018 (best paper award); Klimmasch et al., in preparation

How general is Active Efficient Coding?

disparity tuning and vergence eye movements

motion tuning and pursuit eye movements

Learning Environment

- Sparse Coding: matching pursuit algorithm with gradient descent learning (Mallat & Zhang, 1993)
- Reinforcement Learning: natural actor critic algorithm with discrete actions (Bhatnagar et al., 2009)

Learning Performance

speed: × 2.4

What limits the performance?

NFS: no fine scale (sensory limitation)

CAS: coarse action set (motor limitation)

STD: standard configuration

Are there also internal limitations?

self-improvement until system hits a sensory, motor, or internal limitation

Discussion

- Active Efficient Coding: "Move your sense organs to make sensory encoding as efficient as possible!"
- self-calibration: of a range of eye movements
 - vergence & pursuit
 - but also: optokinetic nystagmus, torsion, accommodation
- general: applicable to other sensory modalities

Outlook 1: medical applications

Amblyopia:

What causes derailed development?
Can we develop better treatment methods?

Eckmann et al., submitted; Schneider et al., in preparation

Outlook 2: event-based cameras

- Advantages of new sensors: low power (<10 mW), low latency (> 10,000 fps), high dynamic range (> 120 dB)
- Funding: French Tech Chair (Université Clermont Auvergne)

PhD position in Clermont-Ferrand available!

GOAL Robots

Adding Overt Attention

Binocular saliency mechanism: look at the most surprising location given your current "world" model

Zhu et al., ICDL 2017

Test on physical iCub

