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The Energy Challenge of Artificial Intelligence

• Deep learning

3

• von Neumann bottleneck

CPU RAM

Mask R-CNN Amazon Data-center

• Energy consumption

• CPU / GPU / TPU > 100W 

Intel Xeon CPU NVIDIA GPU
Titan V100

TPU 3 Google

BUS
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100W → Incompatible with IoT • In memory computing

Beyond von Neumann

Microsoft IoT

• New Non-Volatile memory technology

⌐
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𝒂𝒊 = 𝒇 ෍

𝒋

𝑾𝒊𝒋 . 𝒂𝒋

hidden
neurons

output
neurons

input 
neurons

Synapses Wij

hidden
neurons

Lot of research on RRAM 
as analog synapse

• Operations in Neural Networks :
Multiplication → Accumulation → Non-linear function

NEURAL NETWORKS seems Especially Adapted 
for In Memory Computing 
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Recent Breakthrough: Binarized Neural network 

Synapses {+1,-1}

Hubara, Courbariaux et al. NIPS 2016
Yoshua Bengio’s group

⋮

⋮

Binary 
Inputs 
{+1,-1}

Binary 
Outputs 
{+1,-1}

Our work :
RRAM as binary synapse
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Binarized Neural network:
Very Simple Logical Operations 

𝒂𝟎

𝒂𝒏

𝑾𝒊𝒏
𝒃

⋮ sign 𝒂𝒊

𝑾𝒊𝟎
𝒃

Multiplication → Accumulation → Non-linear function

XNOR → Bitcount      → Sign

𝒂𝒋 𝑾𝒊𝒋
𝒃 𝑾𝒊𝒋

𝒃 . 𝒂𝒋

-1 -1 1

-1 1 -1

1 -1 -1

1 1 1

𝒂𝒋

𝑾𝒊𝒋
𝒃

∑

𝑾𝒊𝒋
𝒃 . 𝒂𝒋

𝑾𝒊𝒋 . 𝒂𝒋 𝒂𝒊 = 𝒇 ෍

𝒋

𝑾𝒊𝒋 . 𝒂𝒋෍

𝒋

𝑾𝒊𝒋 . 𝒂𝒋



• HfO2-based OxRAM integrated in a 130 nm CMOS logic process
• Fast / High retention time / High endurance

RRAM Technology Involved

9

SEM cross-section – TiN/HfO2/Ti/TiN

RRAM Challenge → high variabilityLETI MPW Shuttle managed through CMP 
( today in 200mm; twice a year; next start 

may 2019) 
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Programming condition Very strong Strong Weak

SET compliance current 600µA 55µA 20µA

RESET voltage 2.5V 2.5V 1.5V

Resistance Distribution

Bit error rate (1T1R) < 10-6 9.7 × 10-5 3.3 × 10-2

Prog. Energy (SET/RESET) 120/150pJ 11/14pJ 4/5pJ

Cyclability 100 > 10000 > 106

RRAM Variability Depends Extensively on the 
Programming Regime
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Programming condition Very strong Strong Weak

SET compliance current 600µA 55µA 20µA

RESET voltage 2.5V 2.5V 1.5V

Resistance Distribution

Bit error rate (1T1R) < 10-6 9.7 × 10-5 3.3 × 10-2

Prog. Energy (SET/RESET) 120/150pJ 11/14pJ 4/5pJ

Cyclability 100 > 10000 > 106

RRAM Variability Depends Extensively on the 
Programming Regime

Exploiting weak programming conditions for BNN
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How to deal with bit errors?

• Classical Approach : Error Correction Code
→ Incompatible with in memory computing

ECC leads to a big overhead

ECC

ECC

ECC

ECC

ECC

ECC

ECC

ECC

ECC

ECC

ECC ECC ECC ECC ECC



13

Vdd

output output

CLK

CLK

Pre-Charge Sense Amplifier (PCSA)

CLK

Gnd

• Classical circuit to 
differentiate resistance state

• Reading circuit behavior

W. Zhao et al., IEEE 
Transactions on 

Magnetics: 45,10 
(2009)

R(W)

R(W) / R(W)

R(W)

Our approach : Two RRAM Devices as One Binary 
Synapse to reduce bit error rate

Double the amount of memory

• Devices programmed 
in a complementary 

fashion :

LRS

HRS

HRS

LRS

1
0

R(W)R(W)
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Array structure: 2kBits devices
• Photograph of our circuit • Schematic of the array
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What if we used
1 Transistor 1 Resistor (1T1R) array structure ?

HRS

LRS

1
0

Devices resistance 
states :

WL

BL

R(W)

RRAM
matrix
(1T1R)

Resistance threshold 
between the two 
resistance states : 

HRS

LRS

R(W)

Rth

Big memory window
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𝐑th

R(WLRS) R(WHRS)

1 Transistor 1 Resistor (1T1R) is
Prone to Errors

• Errors when : 
R(WLRS) > Rth or R(WHRS) < Rth

1T1R
« 1 »
fail

1T1R
« 0 »

fail

HRS

LRS

1
0

Devices resistance 
states :

R(W)

WL

BL

R(W)

RRAM
matrix
(1T1R)

Resistance threshold 
between the two 
resistance states : 

HRS

LRS
Rth

Resistances States overlap
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2 Transistors 2 Resistors (2T2R) configuration :

Vdd

out out

CLK CLK

WL WL

BL

CLK

BL

Gnd

RRAM
matrix
(2T2R)

(PCSA)

Devices programmed 
in a complementary 

fashion :

R(W)R(W)

LRS

HRS

HRS

LRS

1
0

R(W)R(W)
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2 Transistors 2 Resistors (2T2R):
Decreasing Error Rate

Vdd

out out

CLK CLK

WL WL

BL

CLK

BL

Gnd

• Errors when : 
R(WLRS) > R(WHRS) or R(WHRS) < R(WLRS)

R(WLRS) R(WHRS)

R(WLRS) / R(WHRS) R(WHRS) / R(WLRS)

2T2R
« 1 »
fail 

2T2R
« 0 »
fail 

RRAM
matrix
(2T2R)

Devices programmed 
in a complementary 

fashion :

LRS

HRS

HRS

LRS

1
0

R(W)R(W)

R(W)R(W)

(PCSA)



R(WHRS)
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Comparison between 1T1R & 2T2R

Bit error rates extraction

WL

BL

R(W)

RRAM
matrix
(1T1R)

Error type:

WL WL

BL BL

R(W)R(W)

RRAM
matrix
(2T2R)

R(WLRS)

R(WLRS)

R(WHRS)

RLRS

RHRS

BL/BLb

Ic =55µA  
VappSet=2V
VappReset=2.5V
tPulse=1µs
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Comparison between 1T1R & 2T2R
• Experimental bit error rate

2T2R reduces error rate

Error Rate 1T1R (-) 

Er
ro

r 
R

at
e 

2
T2

R
 (

-)
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No need of ECC overhead

• Error Correction Code SECDED

Comparison with Error Correction Code
• Experimental bit error rate

Error Rate 1T1R (-) Error Rate 1T1R (-) 

Er
ro

r 
R

at
e 

EC
C

 (
-)

 

data
size

word
size( ),

Er
ro

r 
R

at
e 

2
T2

R
 (

-)
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100k

700M

Cycles

100M

10M

1M

• Distribution

Characteristics over aging devices
with weak programming conditions

• Error rate for 2 devices

~ 6x10-3

~ 10-3

~ 3x10-5

No need of ECC overhead

HRSLRS Error Rate 
1T1R

Device 1

Error Rate 
1T1R

Device 2

Error Rate 
2T2R
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WL

Vdd

WL

BL

XNOR
output

XNOR
output

CLK

CLK

BL

PCSA
CLK

aprev0aprev0 aprev0

WW

RRAM
matrix
(2T2R)

Gnd

aprev0

input

W. Zhao et al., IEEE 
Transactions on Circuits 

and Systems I: Feb. 2014.

Logic in Memory Reading Circuit

XNOR →   Bitcount   →   Sign

• No ECC offers opportunity for in 
memory operation

• XNOR operation directly in PCSA circuit

⋮

⋮

𝑾𝒊𝟎
𝒃

𝑾𝒊𝒋
𝒃

𝑾𝒊𝒏
𝒃

∑ 𝒂𝒑𝒐𝒔𝒕 𝒊

𝒂𝒑𝒓𝒆𝒗 𝟎

𝒂𝒑𝒓𝒆𝒗 𝒋

𝒂𝒑𝒓𝒆𝒗 𝒏

sign
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Synapses {+1,-1}

“3”

Binarized Neural Network: 
MNIST task

XNOR + PCSAs⋮ sign∑ 𝒂𝒑𝒐𝒔𝒕 𝒊

RRAM
matrix

Wb

⋮

𝒂𝒊

Basic building 
block 

Handwritten 
Digit example :

⋮

⋮

𝑾𝒊𝟎
𝒃

𝑾𝒊𝒋
𝒃

𝑾𝒊𝒏
𝒃

∑ 𝒂𝒑𝒐𝒔𝒕 𝒊

𝒂𝒑𝒓𝒆𝒗 𝟎

𝒂𝒑𝒓𝒆𝒗 𝒋

𝒂𝒑𝒓𝒆𝒗 𝒏

sign
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RRAM In-memory BNN (this work) 25nJ

RRAM In-memory 8-bit fixed point 80nJ

Analog Phase Change Memory* ~56nJ

GPU (Tesla V100) ~µJ

CPU (Xeon E5) ~mJ

Hardware implementation

A technology ready
low energy and low area
*Ambrogio, Stefano, et al. "Equivalent-

accuracy accelerated neural-network training 
using analogue memory." Nature (2018)

• Fully-connected BNN: 
2 layers with 1024 neurons each

• Projection to 28 nm technology
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Error evaluation on two different tasks
• MNIST with fully-connected NN

98.2 %

A
cc

u
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n
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e
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e

t(
%

)

2x10-3

Bit error rate (-) 



27

• MNIST with fully-connected NN • CIFAR 10 with Convolutional NN

98.2 %

A
cc

u
ra

cy
 o

n
 t

e
st

 s
e

t(
%

)

2x10-3

87.25 %

2x10-3

Error evaluation on two different tasks

Binarized Neural Networks are resilient to errors

Bit error rate (-) Bit error rate (-) 
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• MNIST with fully-connected NN • CIFAR 10 with Convolutional NN

Including bit errors during the training process

Adapting the training method can extend the bit error tolerance

Adapting the training method
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• Vreset = 1.5V
• Compliance current = 200 µA
• Error rate 1T1R = ~10-2 

• Error rate 2T2R = 2x10-3

Endurance > 1010 cycles

Reliance on 2T2R + Tolerance to Errors 
Allows Using Weak Programming Condition



• Binarized Neural Network ideal for in memory computing

• 2T2R decreases bit error in comparison to 1T1R and ECC
‒ Avoid the use of ECC

‒ Logic operation integrated in reading circuit

• Binarized Neural Network are resilient to errors
‒ Low voltage/current for reading/programming

leads to : Low Energy & high endurance

• Technology ready today

30

To sum up

Hardware & learning algorithm co-development



Thank you for your attention !
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