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The Energy Challenge of Artificial Intelligence

ÅDeep learning

3

Åvon Neumann bottleneck

CPU RAM

Mask R-CNN Amazon Data-center

ÅEnergy consumption

ÅCPU / GPU / TPU > 100W 

Intel Xeon CPU NVIDIA GPU
Titan V100

TPU 3 Google

BUS
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100WŸ Incompatible with IoT ÅIn memory computing

Beyond von Neumann

Microsoft IoT

ÅNew Non-Volatile memory technology
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hidden
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output
neurons

input 
neurons

Synapses Wij

hidden
neurons

Lot of research on RRAM 
as analog synapse

Å Operations in Neural Networks :
Multiplication Ÿ AccumulationŸ Non-linear function

NEURAL NETWORKS seems Especially Adapted 
for In Memory Computing 
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Recent Breakthrough: Binarized Neural network 

Synapses {+1,-1}

Hubara, Courbariaux et al. NIPS 2016
¸ƻǎƘǳŀ .ŜƴƎƛƻΩǎ ƎǊƻǳǇ

ể

ể

Binary 
Inputs 
{+1,-1}

Binary 
Outputs 
{+1,-1}

Our work :
RRAM as binary synapse
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Binarized Neural network:
Very Simple Logical Operations 
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ÅHfO2-based OxRAMintegrated in a 130 nm CMOS logic process
ÅFast / High retention time / High endurance

RRAM Technology Involved

9

SEM cross-section ςTiN/HfO2/Ti/TiN

RRAM Challenge Ÿ high variabilityLETI MPW Shuttle managed through CMP 
( today in 200mm; twice a year; next start 

may 2019) 
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Programming condition Verystrong Strong Weak

SETcompliance current 600µA 55µA 20µA

RESET voltage 2.5V 2.5V 1.5V

Resistance Distribution

Bit error rate (1T1R) < 10-6 9.7 × 10-5 3.3 × 10-2

Prog. Energy (SET/RESET) 120/150pJ 11/14pJ 4/5pJ

Cyclability 100 > 10000 > 106

RRAM Variability Depends Extensively on the 
Programming Regime
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Programming condition Verystrong Strong Weak

SETcompliance current 600µA 55µA 20µA

RESET voltage 2.5V 2.5V 1.5V

Resistance Distribution

Bit error rate (1T1R) < 10-6 9.7 × 10-5 3.3 × 10-2

Prog. Energy (SET/RESET) 120/150pJ 11/14pJ 4/5pJ

Cyclability 100 > 10000 > 106

RRAM Variability Depends Extensively on the 
Programming Regime

Exploiting weak programming conditions for BNN
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How to deal with bit errors?

ÅClassical Approach : Error Correction Code
Ÿ Incompatible with in memory computing

ECC leads to a big overhead

ECC

ECC

ECC

ECC

ECC

ECC

ECC

ECC

ECC

ECC

ECC ECC ECC ECC ECC
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Vdd

output output

CLK

CLK

Pre-Charge Sense Amplifier (PCSA)

CLK

Gnd

ÅClassical circuit to 
differentiate resistance state

ÅReading circuit behavior

W. Zhao et al., IEEE 
Transactions on 

Magnetics:45,10 
(2009)

R(W)

R(W) / R(W)

R(W)

Our approach : Two RRAM Devices as One Binary 
Synapse to reduce bit error rate

Double the amount of memory

ÅDevices programmed 
in a complementary 

fashion :

LRS

HRS

HRS

LRS

1
0

R(W)R(W)



14

Array structure: 2kBits devices
ÅPhotograph of our circuit ÅSchematic of the array
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What if we used
1 Transistor 1 Resistor (1T1R) array structure ?

HRS

LRS

1
0

Devices resistance 
states :

WL

BL

R(W)

RRAM
matrix
(1T1R)

Resistance threshold 
between the two 
resistance states : 

HRS

LRS

R(W)

Rth

Big memory window
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ἠth

R(WLRS) R(WHRS)

1 Transistor 1 Resistor (1T1R) is
Prone to Errors

Å Errors when : 
R(WLRS) > Rth or R(WHRS) < Rth

1T1R
« 1 »
fail

1T1R
« 0 »

fail

HRS

LRS

1
0

Devices resistance 
states :

R(W)

WL

BL

R(W)

RRAM
matrix
(1T1R)

Resistance threshold 
between the two 
resistance states : 

HRS

LRS
Rth

Resistances States overlap
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2 Transistors 2 Resistors (2T2R) configuration :

Vdd

out out

CLK CLK

WL WL

BL

CLK

BL

Gnd

RRAM
matrix
(2T2R)

(PCSA)

Devices programmed 
in a complementary 

fashion :

R(W)R(W)

LRS

HRS

HRS

LRS

1
0

R(W)R(W)
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2 Transistors 2 Resistors (2T2R):
Decreasing Error Rate

Vdd

out out

CLK CLK

WL WL

BL

CLK

BL

Gnd

Å Errors when : 
R(WLRS) > R(WHRS) or R(WHRS) < R(WLRS)

R(WLRS) R(WHRS)

R(WLRS) / R(WHRS) R(WHRS) / R(WLRS)

2T2R
« 1 »
fail 

2T2R
« 0 »
fail 

RRAM
matrix
(2T2R)

Devices programmed 
in a complementary 

fashion :

LRS

HRS

HRS

LRS

1
0

R(W)R(W)

R(W)R(W)

(PCSA)



R(WHRS)
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Comparison between 1T1R & 2T2R

Bit error rates extraction

WL

BL

R(W)

RRAM
matrix
(1T1R)

Error type :

WL WL

BL BL

R(W)R(W)

RRAM
matrix
(2T2R)

R(WLRS)

R(WLRS)

R(WHRS)

RLRS

RHRS

BL/BLb

Ic=55µA  
VappSet=2V
VappReset=2.5V
tPulse=1µs


