In-Memory and Error-Immune Differential RRAM Implementation of Binarized Deep Neural Networks

M. Bocquet*†, T. Hirtzlin*‡, J.-O. Klein‡, E. Nowak§, E. Vianello§, J.-M. Portal† and D. Querlioz‡

[†] Aix Marseille Univ, Université de Toulon, CNRS, IM2NP, Marseille, France

[‡] C2N, Univ Paris-Sud, CNRS, Orsay, France

§ CEA, LETI, Grenoble, France

*These authors contributed equally to the work

2019 AICAS

In-Memory and Error-Immune Differential RRAM Implementation of Binarized Deep Neural Networks

M. Bocquet*†, T. Hirtzlin*‡, J.-O. Klein‡, E. Nowak§, E. Vianello§, J.-M. Portal† and D. Querlioz‡

[†] Aix Marseille Univ, Université de Toulon, CNRS, IM2NP, Marseille, France

[‡] C2N, Univ Paris-Sud, CNRS, Orsay, France

§ CEA, LETI, Grenoble, France

*These authors contributed equally to the work

The Energy Challenge of Artificial Intelligence

Deep learning

Mask R-CNN

Energy consumption

Amazon Data-center

• CPU / GPU / TPU > 100W

Intel Xeon CPU

NVIDIA GPU Titan V100

TPU 3 Google

von Neumann bottleneck

Beyond von Neumann

100W → Incompatible with IoT

Microsoft IoT

In memory computing

New Non-Volatile memory technology

NEURAL NETWORKS seems Especially Adapted input for In Memory Computing output

Multiplication → Accumulation → Non-linear function

$$a_i = f\left(\sum_j W_{ij} \cdot a_j\right)$$

NEURAL NETWORKS seems Especially Adapted input for In Memory Computing output

Multiplication → Accumulation → Non-linear function

RRAM as binary synapse

Recent Breakthrough: Binarized Neural network

RRAM as binary synapse

Binarized Neural network: Very Simple Logical Operations

RRAM Technology Involved

- HfO₂-based OxRAM integrated in a 130 nm CMOS logic process
- Fast / High retention time / High endurance

SEM cross-section – TiN/HfO₂/Ti/TiN

RRAM Variability Depends Extensively on the Programming Regime

Programming condition	Very strong	Strong	Weak
SET compliance current	600μΑ	55μΑ	20μΑ
RESET voltage	2.5V	2.5V	1.5V
Resistance Distribution	LRS HRS $(0) unital position of the positi$	LRS HRS $(0) \text{ uoinnquint} 0$ -1 $10^4 10^5 10^6$ Resistance (Ω)	LRS HRS 3 (b) uoitnqinting of fail 104 105 106 Resistance (Ω)
Bit error rate (1T1R)	< 10 ⁻⁶	9.7 × 10 ⁻⁵	3.3×10^{-2}
Prog. Energy (SET/RESET)	120/150 <i>pJ</i>	11/14 <i>pJ</i>	4/5 <i>pJ</i>
Cyclability	100	> 10000	> 10 ⁶

RRAM Variability Depends Extensively on the Programming Regime

Programming condition	Very strong	Strong	Weak
SET compliance current	600μΑ	55μΑ	20μΑ
RESET voltage	2.5V	2.5V	1.5V
Resistance Distribution	LRS HRS $(0) uointinging in the problem of the $	LRS HRS 3 (α) uoinnqiinqiinqiinqiinqiinqiinqiinqiinqiin	LRS HRS 3 (b) uoitnoting of the fail of
Bit error rate (1T1R)	< 10 ⁻⁶	9.7 × 10 ⁻⁵	3.3×10^{-2}
Prog. Energy (SET/RESET)	120/150 <i>pJ</i>	11/14 <i>pJ</i>	4/5 <i>pJ</i>
Cyclability	100	> 10000	> 10 ⁶

Exploiting weak programming conditions for BNN

How to deal with bit errors?

- Classical Approach : Error Correction Code
- → Incompatible with in memory computing

ECC leads to a big overhead

Our approach: Two RRAM Devices as One Binary Synapse to reduce bit error rate

 Classical circuit to differentiate resistance state

Pre-Charge Sense Amplifier (PCSA)

 Devices programmed in a complementary fashion :

Reading circuit behavior

Double the amount of memory

Array structure: 2kBits devices

Photograph of our circuit

Schematic of the array

What if we used 1 Transistor 1 Resistor (1T1R) array structure?

Resistance threshold between the two resistance states :

1 Transistor 1 Resistor (1T1R) is Prone to Errors

Devices resistance states :

R(W)
HRS 1
LRS 0

Resistance threshold between the two resistance states :

 $R(W_{LRS})$ $R(W_{HRS})$ HRS - fail 10⁵ 10^{4} Resistance (Ω) **1T1R 1T1R** « 1 » « O » fail fail Errors when:

LRS

HRS

LRS fail

2 Transistors 2 Resistors (2T2R) configuration:

2 Transistors 2 Resistors (2T2R): Decreasing Error Rate

(PCSA) Vdd $R(W_{LRS})$ R(W_{HRS}) CLK out $R(\overline{W}_{HRS}) / R(W_{LRS})$ $R(\overline{W}_{LRS}) / R(W_{HRS})$ **RRAM** matrix (2T2R) **2T2R 2T2R** I CLK « 0 » « 1 » fail $R(\overline{W})$ **₹** R(W) Errors when: Devices programmed **LRS** HRS in a complementary $R(\overline{W}_{LRS}) > R(W_{HRS})$ or $R(\overline{W}_{HRS}) < R(W_{LRS})$ LRS **HRS** fashion:

Comparison between 1T1R & 2T2R Bit error rates extraction

Comparison between 1T1R & 2T2R

Experimental bit error rate

Error Rate 1T1R (-)

2T2R reduces error rate

Comparison with Error Correction Code

Experimental bit error rate

Error Correction Code SECDED

No need of ECC overhead

Characteristics over aging devices with weak programming conditions

Distribution

Error rate for 2 devices

No need of ECC overhead

Logic in Memory Reading Circuit

Vdd

- No ECC offers opportunity for in memory operation

Binarized Neural Network:

Hardware implementation

Fully-connected BNN:2 layers with 1024 neurons each

RRAM In-memory BNN (this work)	25nJ
RRAM In-memory 8-bit fixed point	80nJ
Analog Phase Change Memory*	~56nJ
GPU (Tesla V100)	~µJ
CPU (Xeon E5)	~mJ

Projection to 28 nm technology

A technology ready

→ low energy and low area

*Ambrogio, Stefano, et al. "Equivalentaccuracy accelerated neural-network training using analogue memory." *Nature* (2018)

Error evaluation on two different tasks

MNIST with fully-connected NN

Error evaluation on two different tasks

Binarized Neural Networks are resilient to errors

Including bit errors during the training process

MNIST with fully-connected NN

Adapting the training method can extend the bit error tolerance

Reliance on 2T2R + Tolerance to Errors Allows Using Weak Programming Condition

- $V_{reset} = 1.5V$
- Compliance current = $200 \mu A$
- Error rate 1T1R = ~10-2
- Error rate $2T2R = 2x10^{-3}$

To sum up

- Binarized Neural Network ideal for in memory computing
- 2T2R decreases bit error in comparison to 1T1R and ECC
 - Avoid the use of ECC
 - Logic operation integrated in reading circuit
- Binarized Neural Network are resilient to errors
 - Low voltage/current for reading/programming
 - ► leads to : Low Energy & high endurance
- Technology ready today

Hardware & learning algorithm co-development

Thank you for your attention!