
Vincent Lorrain

Olivier.bichler@cea.fr, Johannes.thiele@cea.fr , vincent.lorrain@cea.fr

NEURAL COMPUTING DESIGN: N2D2 AND SPIKE ARCHITECTURES

mailto:Olivier.bichler@cea.fr
mailto:Johannes.thiele@cea.fr
mailto:vincent.lorrain@cea.fr

| 2

GENERAL VIEW OF OUR THEMES

Dee

*N2D2 : DNN design framework
• Unified modeling and NN exploration tool (including spike coding)

• Custom applications building & optimization (CNN, Faster-RCNN…)

• Hardware mapping & benchmarking (CPUs, GPUs, FPGAs, ASIPs)

➢ Programmable code generation: OpenMP, OpenCL, CuDA, TensorRT, PNeuro…

➢ FPGA code generation: C/HLS, DNeuro

EXPLORATION &

EXPLOITATION

H
A

R
D

W
A

R
E

A
C

C
E

L
E

R
A

T
IO

N

Hardware design
• Programmable processor PNeuro

➢ Clustered 8-bit SIMD architecture

➢ Designed for DNN processing chains

➢ Support traditional image processing operations

• Dataflow FPGA IP DNeuro

➢ Optimized RTL DNN layer kernels

➢ Automatic RTL generation through N2D2

Spike neural networks
• Spike-coding, spike-BP, bio-inspired unsupervised learning (STDP)

• RRAM and new devices

• EU H2020 Project: NeuRAM3

• NeuroSpike

➢ CNN spike acrhitecture

ADVANCED CONCEPTS

Neural

computing at

DACLE/LIST

*N2D2 is available at https://github.com/CEA-LIST/N2D2/

https://github.com/CEA-LIST/N2D2/

| 3

ARTIFICIAL INTELLIGENCE

Artificial intelligence

Artificial Intelligence
Machine intelligence that equals or exceeds human

intelligence or efficiency at a specific task

Machine learning

Machine Learning
Provides computers with the ability to learn without

being explicitly programmed

Deep
learning

Deep Learning
Algorithms that permit software to train

itself to perform tasks

Deep Neural Networks
A hierarchy of multiple layers that mimic the neural

networks of our brain

DNN

Olivier Bichler

| 4

WHY THE CNN

Convolutional Neural Network
Today a fundamental building block in image

recognition neural network-based applications

DNN

Object detection Facial recognitionPedestrian detection

CNN

Lorrain Vincent

| 5

WHY THE SPIKE

Weights

H

5

2

Activation function

Out = H(σ𝑋𝑛𝑊𝑛)

X

ACCWeights

X(t)
Threshold

Out = Threshold(׬𝑋𝑛𝑊𝑛𝑑𝑡)

MAC H

W W

Frame ➔ vectorial operations Spike➔ asynchronous data

Two digital synchronous neuron instantiation

*MAC(16bits) 45nm 0,9v:

MULT(16bits) ~ 1,17 pJ

ACC(32bits) ~ 0,1 pJ

TOTAL ~ 1,27 pJ

*ACC(8bits) 45nm 0,9v

ACC ~ 0,03 pJ

TOTAL ~ 0,03 pJ

Horowitz, M. computing's energy problem (and what we can do about it). In Solid-State Circuits Conference Digest of Technical Papers (ISSCC),

One order of magnitude energy consumption reduction per operation with spikes

X42 energy

reduction per

operation

Lorrain Vincent

| 6

Inception V2

NASNet-A (5 @ 1538)

Inception V3

Xception

Inception ResNet V2

NASNet-A …

ResNeXt-101 (64 x 4d)

PolyNet

DPN-131

SENet

NASNet-A (6 @ 4032)

74

75

76

77

78

79

80

81

82

83

84

0,00001 0,0001 0,001 0,01 0,1 1

T
o

p
-1

 a
c

c
u

ra
c

y
o

n
 I
m

a
g

e
N

e
t

(%
)

J/frame

SPIKE ENERGY EFFICIENCY?

Frame

Spike

Nb MAC = Nb ACC

The potential of spike-based CNN:

- Less energy per operation

- Sparsity ➔ less operations per pixel

BUT ➔ requires a specific architecture

Nb MAC < Nb ACCNb MAC > Nb ACC

Goal

Lorrain Vincent

| 7

OUTLINE

1

2

3

4

N2D2

NeuroSpike

Perspectives for Spike

Other work : DNeuro

| 8

A UNIQUE PLATFORM FOR THE DESIGN AND

EXPLORATION OF DNN APPLICATIONS

Full proficiency of the framework
• Contributions, algorithms, implementations and code (no dependency except

OpenCV, no third party code) in C++

Large flexibility
• Open to developments and specific orientations based on industrial needs

Unified modeling and tool flow for both formal and spike coding

Explore Deep Neural Network (DNN) topologies with fast simulation and

efficient analysis view
• Experiment state-of-the-art learning techniques with large databases

• Integrated benchmarking tools (number of computing cycles, memory footprint…)

Easily integrate data conditioning by chaining pre-/post-processing

transformations
• Benefit from approximate computing to generate optimized DNN with reduced

complexity

• Data range adaptation tools (for 8 bits integer operations or less)

Olivier Bichler

| 9

CEA’s platform for the design and exploration of DNN applications:

• Spike coding: modeling and tool flow for both formal and spike coding
• Advanced architectures exploration: unsupervised (STDP), NVM integration,

3D stacking…

• Hardware exports: unified tool flow for hardware targets code generation,

including generic CoTS and specific hardware
• Precision reduction and data range adaptation (8 bits INT operations or less)

• Benchmarking tools (number of computing cycles, memory footprint…)

Code Generation
Data

conditioning

Learning &

Test

databases

Code Execution

CONSIDERED CRITERIA
•Accuracy
•Memory need
•Computational Complexity

HARDWARE
BENCHMARK

•Latency
•Watt
•Cost
•Form Factor

Usual fonctions

in Deep Learning Platform

COMMERCIAL OF THE
SHELF TARGET
•Many-core CPUs
•GPUs
•FPGAs
CEA ACCELERATORS

Modeling Learning Test

Optimization

N2D2: NEURAL NETWORK DESIGN &

DEPLOYMENT

Olivier Bichler

| 10

Current OS
version:

• Standard deep learning tool for feedforward networks

• Hardware exports for Deep Learning

• Automatic spike transcoding for inference

• Event-based spiking neural network simulation

NEW: CUDA
accelerated

SNN:

• Clock-based (sparse binary spike matrix multiplications)

• Multi-layer learning of spiking networks with STDP and BP

• Scales well to large networks, in particular ConvNets

• Particularly suitable for high firing rates (i.e. rather dense matrices)

In process:

• Merge frame-based and spiking neural networks in one framework

• Make N2D2 framework for neuromorphic circuit optimization

• Exports for neuromorphic hardware

Johannes Thiele

:SPIKE TOOL QUICK VIEW

| 11

Frame core

Frame
Learning

Frame
Inference

Frame to Spike
Transposition

“Spiking”, rate-based
equivalence

Spike core

Spike
Learning

Spike
Simulator

o
r

Data
conditioning

Learning &

Test

databases

CEA ACCELERATORS
NeuroSpike

HW SIMULATOR
SystemC

:SPIKE FLOW QUICK VIEW

Lorrain Vincent

| 12

THE NEUROSPIKE

The CNN layer and layer types

Distribute the neurons for hardware

efficiency

Read the weights effectively

Generalize the architecture for CNN layer
Generalization of layer (FC, MaxPooling)

Generalization for any CNN topology

| 13

THE CNN LAYER AND LAYER TYPES

Classic CNN topology:

neurons

3 main types of layers :

Convolution

Fully connected

MaxPooling

➔ Neuron model, neurons partially connect with weights sharing

➔ Max operation (≠ neuron model, no weight),

same connectivity as convolution

CNN ➔ layered network with 3 main types of layers

Weights (kernel)

➔ Neuron model fully connect to the input

a

b

c

Lorrain Vincent

| 14

DISTRIBUTE THE NEURONS FOR HARDWARE

EFFICIENCY

@ox

@ix

@iy

Input

Kernel

output

@iz
@oz

@oy
@W =(@iz,@oz)

@sx

@sy

@ox = @ix - @sx

@oy = @iy - @sy

One input spike is connected to 𝑪𝐞𝐥𝐦𝐗 × 𝑪𝐞𝐥𝐦𝐘 × 𝑶𝐞𝐥𝐦𝒁 neurons

Lorrain Vincent

𝐈𝐞𝐥𝐦𝐗 × 𝐈𝐞𝐥𝐦𝐘 × 𝐈𝐞𝐥𝐦𝒁 𝑶𝐞𝐥𝐦𝐗 × 𝑶𝐞𝐥𝐦𝐘 × 𝑶𝐞𝐥𝐦𝑶

𝑪𝐞𝐥𝐦𝐗 × 𝑪𝐞𝐥𝐦𝐘 × 𝑶𝐞𝐥𝐦𝒁 × 𝐈𝐞𝐥𝐦𝒁

| 15

Independent neurons in convolutional layer:

= Neurons that do not share any input

With sequential (AER) input spikes:

• Independent neurons cannot be triggered at the same time

➔ These neurons can share the same SPE (Spike process elements)

• Nb. neurons that can be triggered at the same time = kernel size

• The distance between these neurons = 𝑪𝐞𝐥𝐦𝐗 on ox and 𝑪𝐞𝐥𝐦𝒀 on oy

Colors representation of independent neurons

For 3x3 kernel on one 8x8 output map

➔ Same color are independent neurons

THE INDEPENDENT NEURONS

Lorrain Vincent

𝑪𝐞𝐥𝐦𝐗

𝑪
𝐞
𝐥𝐦

𝒀

| 16

THE REPARTITION OF NEURONS

Hardware repartition of one output map

Independent neurons are in the same SPE

The weights are distributed in relation of the @ of input spike

The outputs are serialized by the PE to be send to the AER

Lorrain Vincent

For ASIC the Nb SPE = Nb elem max kernel (CelmMAX)

@𝑆𝑃𝐸 = @𝑜𝑥 + 𝑂𝑒𝑙𝑚𝑋 × @𝑜𝑦 𝑚𝑜𝑑 (𝐶𝑒𝑙𝑚𝑋 × 𝐶𝑒𝑙𝑚𝑌)

@𝐼 =
@𝑜𝑥 + 𝑂𝑒𝑙𝑚𝑋 × @𝑜𝑦

𝐶𝑒𝑙𝑚𝑋 × 𝐶𝑒𝑙𝑚𝑌
+
𝑂𝑒𝑙𝑚𝑋 × 𝑂𝑒𝑙𝑚𝑦

𝐶𝑒𝑙𝑚𝑋 × 𝐶𝑒𝑙𝑚𝑌
×@𝑜𝑧

PE

SPE 6 SPE 7 SPE 8SPE 3 SPE 4 SPE 5SPE 0 SPE 1 SPE 2

Shared memory@𝑆𝑃𝐸 = 0,@𝐼 = 0

For more than one

output map

| 17

Shared memory

Weights

Permutation network

THE WEIGHTS DISTRIBUTION SOLUTION

Distribution of the weights to the SPE

Digital or analog weights allowed

Reduced and distributed hardware addressing

Chosen solution ➔ permutation network

Lorrain Vincent
PE

SPE 0

Private

Memory

SPE 1

Private

Memory

SPE 2

Private

Memory

SPE 0

Private

Memory

| 18

WEIGHTS DISTRIBUTION ACORDING TO

THE NEURONS REPARTITION

Actual equation of the permutation network, 𝐬𝐲 = 𝟎

𝐬𝐱 = ቊ
𝐢𝐱𝐦𝐨𝐝 𝐂𝐞𝐥𝐦𝐗 − 𝐒𝐏𝐄𝐱 𝐢𝐟 𝐢𝐱𝐦𝐨𝐝 𝐂𝐞𝐥𝐦𝐗 ≥ 𝐒𝐏𝐄𝐱

𝒆𝒍𝒔𝒆 𝐢𝐱𝐦𝐨𝐝 𝐂𝐞𝐥𝐦𝐗 − 𝐒𝐏𝐄𝐱 + 𝐂𝐞𝐥𝐦𝐗

Ex. 𝐟(𝐢𝐱) = 𝐬𝐱 for 𝐂𝐱 = 𝟓

Identical logic

For 𝐬𝐲

𝑖𝑥 𝑆𝑃𝐸_𝑥 = 0 𝑆𝑃𝐸_𝑥 = 1 𝑆𝑃𝐸_𝑥 = 2 𝑆𝑃𝐸_𝑥 = 3 𝑆𝑃𝐸_𝑥 = 4

0 0 4 3 2 1

1 1 0 4 3 2

2 2 1 0 4 3

3 3 2 1 0 4

4 4 3 2 1 0

Reorganization

Circular permutation

0 1 2 3 4

0 4 3 2 1

1 0 4 3 2

2 1 0 4 3

3 2 1 0 4

4 3 2 1 0

Circular permutation

Circular permutation

Circular permutation

Lorrain Vincent

| 19

ONE CASE OF DISTRIBUTION

Network configuration examples

0 4 3 2 1

4 3 2 1 0

0 4 3 2 1

2 1 0 4 3

0 4 3 2 1

3 2 1 0 4

0 4 3 2 1

1 0 4 3 2

0 4 3 2 1

0 4 3 2 1

0 4 3 2 1 0 4 3 2 1 0 4 3 2 1 0 4 3 2 1

𝑖𝑥 = 0 𝑖𝑥 = 1 𝑖𝑥 = 2 𝑖𝑥 = 3 𝑖𝑥 = 4

0 4 3 2 1

Lorrain Vincent

The permutation can be applied on sub weight vector in case of kernel concatenation

CelmX × CelmY < n × C𝑒𝑙𝑚𝑀𝑎𝑥

| 20

GENERALIZE THE ARCHITECTURE FOR

CNN LAYERS

SPE 3SPE 0

Private

Memory

SPE 1 SPE 2

Shared memory

PE

Private

Memory

Private

Memory

Private

Memory

STRIDE

OUTPUT
AER

INPUT
AER

Recursion

Multi Kernel

Neurons
Mapping

AER

(𝑜𝑥, 𝑜𝑦 , 𝑜𝑧)

AER

(𝑖𝑥, 𝑖𝑦 , 𝑖𝑧)

Control

The permutation network

And the @I in all SPE

Allow multiple layer

in one NeuroSpike

Allow stride /= 1

Allow sequential

Output computation

Hardware blocks added to the computation core

to enable all CNN topologies and main layer types

Computation

core

NeuroSpike

| 21

GENERALIZE THE ARCHITECTURE FOR

CNN LAYERS : FC LAYER

Fully connected layer

Equivalent to a convolutional layer with kernel size = input size

Full convolution hardware reuse

Hardware limit for FC ➔ 𝑁𝑏𝑆𝑃𝐸 = 𝐶𝑒𝑙𝑚𝑀𝐴𝑋
≥ 𝐼

FC1 ≡ Conv, CelmX × CelmY = IelmX × IelmY = I

FC2 ≡ Conv, CelmX × CelmY = 1 × 1)

Lorrain Vincent

| 22

SPE

ADD Threshold

0

ACC nb. bits

ACC nb. bits

ACC nb. bits

ACC nb. bits

ACC nb. bits

@I

Weight

MAXPOOL

ACC

ACC nb. bits

ACC nb. bits

ACC nb. bits

ACC nb. bits

ACC nb. bits

@sx,@sy,@iz

ACC nb. bits

ACC nb. bits

ACC nb. bits

ACC nb. bits

ACC nb. bits

@MAX

=

MaxPooling ➔ MAX activity determination

Same connectivity as Conv layers

MaxPooling is expensive

Memory ➔ store all synaptic activities

Computation ➔ max of all synaptic activities

Incompatible with the IF neuron implementation

Incompatible

memory size

GENERALIZE THE ARCHITECTURE FOR

CNN LAYERS : MAXPOOLING

| 23

SPE

ADD Threshold

0

ACC nb. bits

ACC nb. bits

ACC nb. bits

ACC nb. bits

ACC nb. bits

@I

Weight

MaxCompt

Core@iz

@sx,@sy

@SMaxDiff

=

@SMaxDiff

@SMaxDiff

@SMaxDiff

@SMaxDiff

ACC nb. bits

@SMaxDiff

MaxCompt ➔ MaxPooling approximation

Same connectivity as Conv layer use of weights for synapse @

Compatible with the IF neuron implementation

MaxCompt is less expensive :
Memory ➔ store 1 differential activity and 1 address

Computation ➔ single address comparison

Loss <0.1% on the recognition rate

GENERALIZE THE ARCHITECTURE FOR

CNN LAYERS : MAXPOOLING

| 24

GENERALIZE THE ARCHITECTURE FOR

CNN LAYERS : STRIDE

Deduction from the output map with Stx = Sty = 1

Discard of unused outputs and address remap of

remaining outputs in post-calcul

PE

STRIDE

OUTPUT
AER

Stride = 1 Stride = 2

new ox =
ox
Stx

if ox mod Stx = 0

new oy =
oy

Sty
if oy mod Sty = 0

1 ALU instead of CelmMAX

Output map

Lorrain Vincent

| 25

GENERALIZE THE ARCHITECTURE FOR

CNN LAYERS : MULTI OUTPUT MAP

Multi Kernel ➔ time unfolding

All filters cannot be stored in one weight memory line

Duplicate ≡ multiple inputs with the same pulses

Repetition of the same entry with iz ascending

Desired

connection

Implemented

connection

Lorrain Vincent

Multi Kernel
INPUT

AER

(𝑖𝑥, 𝑖𝑦, 𝑖𝑧) (𝑖𝑥, 𝑖𝑦, 𝑖𝑧+1) (𝑖𝑥, 𝑖𝑦, 𝑖𝑧)

Neurons
Mapping

Computation

core

| 26

SPE 3SPE 0

Private

Memory

SPE 1 SPE 2

Shared memory

PE

Private

Memory

Private

Memory

Private

Memory

STRIDE

OUTPUT
AER

INPUT
AER

Recursion

Multi Kernel

Neurons
Mapping

GENERALIZE THE ARCHITECTURE FOR

CNN LAYERS : MULTI LAYERS

Multi layers

Recursion of spike processing

Looping of the output spike to the input

Adding an internal layer coordinate 𝒊𝒄

𝐢𝐜 ≠ 𝐦𝐚𝐱𝐢𝐜 = 𝐦𝐚𝐱

Lorrain Vincent

| 27

THE RESULTS

OP a common metric for Spiking architecture

STOA: spiking architectures

NeuroSpike Measurement and conditions

NeuroSpike Performance

| 28

OP A COMMON METRIC FOR SPIKING

ARCHITECTURE

Case study: digital implementation

Goal: find a common metric for spike comparison

Spike

ACC(𝐍𝐛𝐢𝐭) ➔ ADD(𝐍𝐛𝐢𝐭)

ADD 𝐍𝐛𝐢𝐭 = 𝐍𝐛𝐢𝐭 − 𝟏 +
𝟏

𝟐

ACC threshold

Mem I

Out

𝐎𝐏𝐢 = ACC(𝐍𝐛𝐢𝐭) × 𝐧𝐛𝐀𝐂𝐂

ADD(8bits) = 7,5 OP

Out = Threshold(׬𝑋𝑛𝑊𝑛𝑑𝑡)

±𝑊𝑛

Common metric: “atomic” operation with data/weights precision of 𝐍_𝐛𝐢𝐭

Intrinsically

required

memory

OP/j =
𝐾𝑒𝑟𝑛𝑒𝑙max∗ 𝐴𝐷𝐷 𝑁𝑏𝑖𝑡

𝑊 ∗ 𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠

OP/s =
𝐾𝑒𝑟𝑛𝑒𝑙max∗ 𝐴𝐷𝐷 𝑁𝑏𝑖𝑡

𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠

Lorrain Vincent

| 29

STOA: SPIKING ARCHITECTURES

Generic Conv

sequential (AER) input spikes

Weights sharing

Only convolution

// read of weigths

// process

No weights sharing

TrueNorth BrainScaleS

𝐾𝑒𝑟𝑛𝑒𝑙max 256 112

ACC // 256 8

𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠 1 ms 100 ms

𝑁𝑏𝑖𝑡 1 bit 4-8 bits

W 10−2mW 1,7W

Serrano Camuas 11

𝐾𝑒𝑟𝑛𝑒𝑙max 1024 1024

ACC // 1 1

𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠 30-340 ns 50-565 ns

𝑁𝑏𝑖𝑡 3 bits 18 bits

W 150 mW 200 mW

Camuas 12 Multiplex

𝐾𝑒𝑟𝑛𝑒𝑙max 4096 16k

ACC // 1 128

𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠 60-680 ns 24-774 ns

𝑁𝑏𝑖𝑡 6 bits 6 bits

W 200 mW NC

Partial hardware

sharing

Lorrain Vincent

| 30

MEASUREMENT AND CONDITIONS

Transcoded CNN used in PrimeTime

Network for MNIST database

Lorrain Vincent

Frame Spiking

Score MACs ∆ Score spikes/MAC

MNIST

ReLU
98.1% 94k 5 98.1% 1.27

Frame DNN Spiking DNN

Quantization Yes Yes

Approx. computing No Yes

Base operation Multiply-Accumulate

(MAC)

Accumulate only

Activation function Non-linear function Threshold

(+ refractory period)*

Parallelism Spatial Spatial and temporal

Memory reutilisation Yes No

*Not required for ReLU activation function

| 31

MEASUREMENT AND CONDITIONS

Nb. layers 𝐂𝐌𝐚𝐱𝐗 × 𝐂𝐌𝐚𝐱𝐘 Nb. filters 𝐈𝐞𝐥𝐦𝐗 × 𝐈𝐞𝐥𝐦𝐘 Neurons Process

8 11 x 11 2048 32 x 32 30,976 FDSOI 28

Simulation Power Area Freq

DC 70.9 mW 0.309 mm² 400 MHz

Prime time 67.8 mW 0.309 mm² 400 MHz

NeuroSpike Simulation results without memory (typical 25°C, 0.9V)

NeuroSpike configuration for the simulations

Bodies bias memory projection size and power (typical 25°C, 0.9V)

Memory Power Area Rd% Wr% Freq

Weights 19.0 mW 1.5 mm² 20 0 400 MHz

Integrations 64.1 mW 0.3 mm² 20 20 400 MHz

Others 0.8 mW 0.2 mm² 3 0 400 MHz

Read and write rate determined using the RTL simulation

Lorrain Vincent

| 32

NEUROSPIKE PERFORMANCE

weights
13%

integrations
42%Other

0%

Archi
45%

Consumption/Power: 153.4 mW

weights
61%

integrations
16%

Other
11%

Archi
12%

Area 2.466 mm²

PrimeTime simulation gives:

Weights area >> Integrations areaPower consumption ~ evenly

distributed between memory and logic

Weights (R only) power <<

Integrations (R/W) power

Lorrain Vincent

| 33

NEUROSPIKE PERFORMANCE

Performance in OP vs Camunas 11

Gain of x4 in processing time

Gain of x11 in energy consumption

Flexibility in term of topology and models (MaxPooling, FC)

Full CNN implementation

T

M

10G

1
NeuroSpike

Baseline OP/s for

NeuroSpike

Baseline OP/J for

NeuroSpike

Lorrain Vincent

| 34

Perspectives

The future of NeuroSpike

Works in process

Dneuro

| 35

NEXT : EVENT BASED DATA,

UNSUPERVISED LEARNING

Event based data:

Reducing the number of spike needed for an application

Need an efficient event-based Learning for CNN

Unsupervised learning

may lead to more efficient data representation, hence energy

efficiency

Lorrain Vincent

Johannes Thiele, Thesis

• First fully event-based implementation of multi-layer
backpropagation

• Allows multi-layer optimization

• Allows exact definition of objective function (supervised and
unsupervised)

| 36Johannes Thiele | 08.11.18

• Dynamic error

ternarization by

second integrator U

• Translates SNN

dynamic precision to

BP

• Accumulations and

comparisons only

• Promising

preliminary results

on MNIST (99.05%

with CNN)

“Ternarized gradients for efficient on-chip training of spiking neural networks”, J. C. Thiele, O. Bichler & A. Dupret, Cognitive Computing 2018

“Retro-propagation d‘Erreurs Sous Forme Impulsionnelle Dans Un Réseau De Neurones Impulsionnels”, J. C. Thiele & O. Bichler , European Patent under Review

EVENT-BASED IMPLEMENTATION OF THE

BACKPROPAGATION ALGORITHM FOR SPIKING NEURONS

| 37

DNEURO

Olivier Bichler

RTL HW library

• Set of DNN layer kernels optimized in RTL
• Generic RTL

• Support convolutional layers… (Fully-CNN)
Today: fully connected, convolution and max pooling

layers

Plan: unit map connectivity and stride support

Fully automatic DNN RTL generation

• Dataflow computation

Early projection performances (ongoing

work)

• e.g. 250 GOPS on Virtex 7 UltraScale+ VU7P

@100MHz (~20W)

Future works

• Performance optimizations (e.g. use of DSP,

increase of frequency…)

• New DNN layers support (e.g. FasterRCNN…)

DNN generator

DNeuro lib

DNN RTL

FPGA synthesis flow

c
o

n
s
tr

a
in

ts

N2D2

INI

network

descripti

on file

Centre de Saclay
Nano-Innov PC 172 - 91191 Gif sur Yvette Cedex

| 39

EXAMPLE OF SPIKE-CODING RESULTS

Frame Spiking

Score MACs ∆ Score spikes/MAC

MNIST

ReLU
98.1% 94k 5 98.1% 1.27

Frame DNN Spiking DNN

Quantization Yes Yes

Approx. computing No Yes

Base operation Multiply-Accumulate

(MAC)

Accumulate only

Activation function Non-linear function Threshold

(+ refractory period)*

Parallelism Spatial Spatial and temporal

Memory reutilisation Yes No

*Not required for ReLU activation function

Network for MNIST database

| 40

“Formal” neural network model
Multiply-Accumulate (MAC) + non-linear operation

෍

𝑖

𝑥𝑖 . 𝑤𝑖𝑗 ℎ(…)𝑥𝑖

𝑥𝑁

𝑥0…
…

𝑦𝑗

𝑦𝑗 = ℎ ෍

𝑖

𝑥𝑖 . 𝑤𝑖𝑗
𝑛𝑗
𝑇𝑎𝑐𝑐

≈
σ𝑖 𝑛𝑖 . 𝑤𝑖𝑗

𝑥𝑡ℎ 𝑠𝑖𝑔𝑛(𝑛𝑗) . 𝑇𝑎𝑐𝑐

Approximation for 𝑛𝑗 ≫ 1:

𝑥𝑖 ≡
𝑛𝑖
𝑇𝑎𝑐𝑐

𝑦𝑗 ≡
𝑛𝑗
𝑇𝑎𝑐𝑐

with

h(…) = ReLU(…) activation equivalence:

𝑥𝑡ℎ+ = 1

𝑥𝑡ℎ− → −∞

“Spiking”, rate-based equation equivalence

• Neuron model: Integrate & Fire (IF)

• Neuron thresholds: 𝑥𝑡ℎ+ > 0 and 𝑥𝑡ℎ− < 0
• Integration is reset to its value minus 𝑥𝑡ℎ 𝑠𝑖𝑔𝑛(𝑛𝑗)

• Input / output spikes over duration 𝑇𝑎𝑐𝑐: 𝑛𝑖 / 𝑛𝑗

Mathematical convergence

➔ use the result of frame-based learning in spike

TRANSPOSITION PRINCIPLE

| 41

NEURON DISTRIBUTION INTO NEUROSPIKE

0 1 2 0 1 2

3 4 5 3 4 5

6 7 8 6 7 8

0 1 2 0 1 2

3 4 5 3 4 5

6 7 8 6 7 8

0 0 0 1 1 1

0 0 0 1 1 1

0 0 0 1 1 1

2 2 2 3 3 3

2 2 2 3 3 3

2 2 2 3 3 3

SPE N

I0
I1

In

I = 8 x8, C = 3 x 3 , O = 6 x 6

@SPE @I

5

I0

Cy Cy

Cx Cx

ቊ
𝑆𝑃𝐸𝑥 = 𝑜𝑥 𝑚𝑜𝑑 𝐶𝑒𝑙𝑚𝑋

𝑆𝑃𝐸𝑦 = 𝑜𝑦 𝑚𝑜𝑑 𝐶𝑒𝑙𝑚𝑌
@neuron (𝑜𝑥, 𝑜𝑦)

𝐼𝑥 =
𝑜𝑥

𝐶𝑒𝑙𝑚𝑋

𝐼𝑦 =
𝑜𝑦

𝐶𝑒𝑙𝑚𝑌

𝑆𝑃𝐸 = 𝑆𝑃𝐸𝑥 + 𝐶𝑒𝑙𝑚𝑋 × 𝑆𝑃𝐸𝑦 @𝐼 = 𝐼𝑥 + 𝐶𝑒𝑙𝑚𝑋 × 𝐼𝑦

In NeuronSpike the @neuron is defined by (@SPE, @I)

| 42

ADDRESSING NEURONS

0 1 2 0 1 2

3 4 5 3 4 5

6 7 8 6 7 8

0 1 2 0 1 2

3 4 5 3 4 5

6 7 8 6 7 8

0 0 0 1 1 1

0 0 0 1 1 1

0 0 0 1 1 1

2 2 2 3 3 3

2 2 2 3 3 3

2 2 2 3 3 3

@SPE @I

Max 4 possibilities of @I

per input spike
Nb SPE = size of filter max

(𝐶𝑒𝑙𝑚𝑀𝐴𝑋
)

I = 8 x8, C = 3 x 3 , O = 6 x 6

0 1 2

3 4 5

6 7 8

@W

The number of SPE is independent of the number of neurons

The number of SPE = 𝐂𝐞𝐥𝐦𝐌𝐀𝐗
= 𝐌𝐀𝐗 𝐍𝐛𝐂𝐧𝐞𝐮𝐫𝐨

➔Full hardware sharing between neurons

| 43

SHARING THE WEIGHTS

The distributed @

0 1 2 3 4

2 3 4 0 1
= 2 2 2 − 3 − 3

Addressing vector based on the

departure to arrival distance

deg

