

NEURAL COMPUTING DESIGN: N2D2 AND SPIKE ARCHITECTURES

Vincent Lorrain
Olivier.bichler@cea.fr, Johannes.thiele@cea.fr , vincent.lorrain@cea.fr

GENERAL VIEW OF OUR THEMES

*N2D2 : DNN design framework

Hardware mapping & benchmarking (CPUs, GPUs, FPGAs, ASIPs)

Programmable code generation: OpenMP, OpenCL, CuDA, TensorRT, PNeuro...

FPGA code generation: C/HLS, DNeuro

Neural computing at DACLE/LIST

HARDWARE ACCELERATION

ADVANCED CONCEPTS

Hardware design

- Programmable processor PNeuro
 - Clustered 8-bit SIMD architecture
 - Designed for DNN processing chains
 - Support traditional image processing operations
- Dataflow FPGA IP DNeuro
 - Optimized RTL DNN layer kernels
 - Automatic RTL generation through N2D2

Spike neural networks

- Spike-coding, spike-BP, bio-inspired unsupervised learning (STDP)
- RRAM and new devices
- EU H2020 Project: NeuRAM3
- NeuroSpike
 - CNN spike acrhitecture

ARTIFICIAL INTELLIGENCE

Artificial Intelligence

Machine intelligence that equals or exceeds human intelligence or efficiency at a specific task

Machine Learning

Provides computers with the ability to learn without being explicitly programmed

Deep Learning

Algorithms that permit software to train itself to perform tasks

Deep Neural Networks

A hierarchy of multiple layers that mimic the neural networks of our brain

WHY THE CNN

Convolutional Neural Network

Today a fundamental building block in image recognition neural network-based applications

Object detection

Pedestrian detection

Facial recognition

WHY THE SPIKE

Two digital synchronous neuron instantiation

SPIKE ENERGY EFFICIENCY?

The potential of spike-based CNN:

- Less energy per operation
- Sparsity → less operations per pixel BUT → requires a specific architecture

OUTLINE

N2D2 NeuroSpike Perspectives for Spike Other work: DNeuro

A UNIQUE PLATFORM FOR THE DESIGN AND EXPLORATION OF DNN APPLICATIONS

- Full proficiency of the framework
- Contributions, algorithms, implementations and code (no dependency except OpenCV, no third party code) in C++
- Large flexibility
- Open to developments and specific orientations based on industrial needs
- Unified modeling and tool flow for both formal and spike coding
- Explore Deep Neural Network (DNN) topologies with fast simulation and efficient analysis view
- Experiment state-of-the-art learning techniques with large databases
- Integrated benchmarking tools (number of computing cycles, memory footprint...)
 - Easily integrate data conditioning by chaining pre-/post-processing transformations
- Benefit from approximate computing to generate optimized DNN with reduced complexity
- Data range adaptation tools (for 8 bits integer operations or less)

- CEA's platform for the design and exploration of DNN applications:
 - Spike coding: modeling and tool flow for both formal and spike coding
 - Advanced architectures exploration: unsupervised (STDP), NVM integration,
 3D stacking...
 - Hardware exports: unified tool flow for hardware targets code generation, including generic CoTS and specific hardware
 - Precision reduction and data range adaptation (8 bits INT operations or less)
 - Benchmarking tools (number of computing cycles, memory footprint...)

Current OS version:

- Standard deep learning tool for feedforward networks
- Hardware exports for Deep Learning
- Automatic spike transcoding for inference
- Event-based spiking neural network simulation

NEW: CUDA accelerated SNN:

- Clock-based (sparse binary spike matrix multiplications)
- Multi-layer learning of spiking networks with STDP and BP
- Scales well to large networks, in particular ConvNets
- Particularly suitable for high firing rates (i.e. rather dense matrices)

In process:

- Merge frame-based and spiking neural networks in one framework
- Make N2D2 framework for neuromorphic circuit optimization
- Exports for neuromorphic hardware

N2D2:SPIKE FLOW QUICK VIEW

THE NEUROSPIKE

- The CNN layer and layer types
- Distribute the neurons for hardware efficiency
- Read the weights effectively
- Generalize the architecture for CNN layer
 - —Generalization of layer (FC, MaxPooling)
 - Generalization for any CNN topology

THE CNN LAYER AND LAYER TYPES

3 main types of layers:

→ Neuron model, neurons partially connect with weights sharing Convolution

Fully connected → Neuron model fully connect to the input

MaxPooling → Max operation (≠ neuron model, no weight), same connectivity as convolution

CNN \rightarrow layered network with 3 main types of layers

list ceatech

DISTRIBUTE THE NEURONS FOR HARDWARE **EFFICIENCY**

One input spike is connected to $C_{\mathrm{elm}X} \times C_{\mathrm{elm}Y} \times O_{\mathrm{elm}Z}$ neurons

THE INDEPENDENT NEURONS

Independent neurons in convolutional layer:

= Neurons that do not share any input

With sequential (AER) input spikes:

- Independent neurons cannot be triggered at the same time
 - → These neurons can share the same **SPE** (Spike process elements)
- Nb. neurons that can be triggered at the same time = kernel size
- The distance between these neurons = C_{elmX} on o_x and C_{elmY} on o_y

Colors representation of independent neurons For 3x3 kernel on one 8x8 output map

→ Same color are independent neurons

THE REPARTITION OF NEURONS

Hardware repartition of one output map

- Independent neurons are in the same SPE
- The weights are distributed in relation of the @ of input spike
- The outputs are serialized by the PE to be send to the AER

For ASIC the Nb SPE = Nb elem max kernel $(C_{elm_{MAX}})$

THE WEIGHTS DISTRIBUTION SOLUTION

- Distribution of the weights to the SPE
 - Digital or analog weights allowed
 - Reduced and distributed hardware addressing
- Chosen solution → permutation network

WEIGHTS DISTRIBUTION ACORDING TO THE NEURONS REPARTITION

lacksquare Actual equation of the permutation network, $\mathbf{s}_{\mathrm{v}}=\mathbf{0}$

$$s_{x} = \begin{cases} (i_{x} mod C_{elmX}) - SPE_{x} & \text{if } i_{x} mod C_{elmX} \geq SPE_{x} \\ else & (i_{x} mod C_{elmX}) - SPE_{x} + C_{elmX} \end{cases}$$

i_x	$SPE_x = 0$	$SPE_x = 1$	$SPE_x = 2$	$SPE_x = 3$	$SPE_x = 4$
0	0	4	3	2	1
1	1	0	4	3	2
2	2	1	0	4	3
3	3	2	1	0	4
4	4	3	2	1	0

Ex.
$$f(i_x) = s_x$$
 for $C_x = 5$

Identical logic For S_y

Reorganization

Circular permutation

Circular permutation

Circular permutation

Circular permutation

list coatech

ONE CASE OF DISTRIBUTION

Network configuration examples

The permutation can be applied on sub weight vector in case of kernel concatenation $C_{\rm elmX} \times C_{\rm elmY} < n \times C_{\rm elmMax}$

GENERALIZE THE ARCHITECTURE FOR CNN LAYERS

GENERALIZE THE ARCHITECTURE FOR CNN LAYERS: FC LAYER

Fully connected layer

Equivalent to a convolutional layer with kernel size = input size

$$FC_1 \equiv Conv, C_{elmX} \times C_{elmY} = I_{elmX} \times I_{elmY} = I$$

- Full convolution hardware reuse
- Hardware limit for FC → $Nb_{SPE} = C_{elm_{MAX}} \ge I$

GENERALIZE THE ARCHITECTURE FOR CNN LAYERS: MAXPOOLING

■ MaxPooling → MAX activity determination

- Same connectivity as Conv layers
- MaxPooling is expensive
 - ■Memory → store all synaptic activities
 - —Computation → max of all synaptic activities
- Incompatible with the IF neuron implementation

GENERALIZE THE ARCHITECTURE FOR CNN LAYERS : MAXPOOLING

■ MaxCompt → MaxPooling approximation

- Same connectivity as Conv layer use of weights for synapse @
- Compatible with the IF neuron implementation
- MaxCompt is less expensive :
 - ■Memory → store 1 differential activity and 1 address
 - ■Computation → single address comparison
- Loss <0.1% on the recognition rate</p>

GENERALIZE THE ARCHITECTURE FOR CNN LAYERS : STRIDE

■ Deduction from the output map with $St_x = St_y = 1$

$$\begin{cases} \text{new}(o_x) = \left\lfloor \frac{o_x}{St_x} \right\rfloor & \text{if } o_x \text{ mod } St_x = 0 \\ \text{new}(o_y) = \left\lfloor \frac{o_y}{St_y} \right\rfloor & \text{if } o_y \text{ mod } St_y = 0 \end{cases}$$

Stride = 2

Discard of unused outputs and address remap of remaining outputs in post-calcul

GENERALIZE THE ARCHITECTURE FOR CNN LAYERS: MULTI OUTPUT MAP

■ Multi Kernel → time unfolding

- All filters cannot be stored in one weight memory line
- Duplicate = multiple inputs with the same pulses
- $lue{}$ Repetition of the same entry with ${
 m i}_{
 m z}$ ascending

GENERALIZE THE ARCHITECTURE FOR **CNN LAYERS: MULTI LAYERS**

Multi layers

- Recursion of spike processing
- Looping of the output spike to the input
- Adding an internal layer coordinate i_c

- OP a common metric for Spiking architecture
- STOA: spiking architectures
- NeuroSpike Measurement and conditions
- NeuroSpike Performance

OP A COMMON METRIC FOR SPIKING **ARCHITECTURE**

- Case study: digital implementation
- Goal: find a common metric for spike comparison

$$OP/j = \frac{Kernel_{max} * ADD(N_{bit})}{W * t_{process}}$$

$$\mathsf{OP/s} = \frac{\mathit{Kernel}_{\max} * \mathit{ADD}(N_{bit})}{t_{process}}$$

Common metric: "atomic" operation with data/weights precision of N_bit

STOA: SPIKING ARCHITECTURES

Generic

	TrueNorth	BrainScaleS	
$Kernel_{\max}$	256	112	
ACC //	256	8	
$t_{process}$	1 ms	100 ms	
N_{bit}	1 bit	4-8 bits	
W	10 ⁻² mW	1,7W	

- // read of weigths
- // process
- No weights sharing

Partial hardware sharing

Conv

	Serrano	Camuas 11
Kernel _{max}	1024	1024
ACC //	1	1
$t_{process}$	30-340 ns	50-565 ns
N_{bit}	3 bits	18 bits
W	150 mW	200 mW
	Camuas 12	Multiplex
Kernel _{max}	4096	16k
ACC //	1	128
$t_{process}$	60-680 ns	24-774 ns
Noit	6 bits	6 bits
W	200 mW	NC

- sequential (AER) input spikes
- Weights sharing
- Only convolution

MEASUREMENT AND CONDITIONS

Network for MNIST database

	Frame DNN	Spiking DNN
Quantization	Yes	Yes
Approx. computing	No	Yes
Base operation	Multiply-Accumulate (MAC)	Accumulate only
Activation function	Non-linear function	Threshold (+ refractory period)*
Parallelism	Spatial	Spatial and temporal
Memory reutilisation	Yes	No

^{*}Not required for ReLU activation function

	Frame			Spiking		
	Score MACs		Δ	Score	spikes/MAC	
MNIST ReLU	98.1%	94k	5	98.1%	1.27	

Transcoded CNN used in PrimeTime

MEASUREMENT AND CONDITIONS

NeuroSpike configuration for the simulations

Nb. layers	$C_{MaxX} \times C_{MaxY}$	Nb. filters	$I_{elmX} \times I_{elmY}$	Neurons	Process
8	11 x 11	2048	32 x 32	30,976	FDSOI 28

NeuroSpike Simulation results without memory (typical 25°C, 0.9V)

Simulation	Power	Area	Freq
DC	70.9 mW	0.309 mm ²	400 MHz
Prime time	67.8 mW	0.309 mm ²	400 MHz

Bodies bias memory projection size and power (typical 25°C, 0.9V)

Memory	Power	Area	Rd%	Wr%	Freq
Weights	19.0 mW	1.5 mm²	20	0	400 MHz
Integrations	64.1 mW	0.3 mm ²	20	20	400 MHz
Others	0.8 mW	0.2 mm ²	3	0	400 MHz

Read and write rate determined using the RTL simulation

NEUROSPIKE PERFORMANCE

PrimeTime simulation gives:

Consumption/Power: 153.4 mW

weights 13% Archi 45%. integrations 42% Other 0%

Area 2.466 mm²

Power consumption ~ evenly distributed between memory and logic Weights area >> Integrations area

Weights (R only) power << Integrations (R/W) power

Performance in OP vs Camunas 11

- Gain of x4 in processing time
- Gain of x11 in energy consumption
- Flexibility in term of topology and models (MaxPooling, FC)
- Full CNN implementation

- Perspectives
 - The future of NeuroSpike
 - Works in process
- Dneuro

NEXT: EVENT BASED DATA, UNSUPERVISED LEARNING

- Event based data:
 - Reducing the number of spike needed for an application
 - Need an efficient event-based Learning for CNN
- Unsupervised learning
 - may lead to more efficient data representation, hence energy efficiency

Johannes Thiele, Thesis

- First fully event-based implementation of multi-layer backpropagation
- Allows multi-layer optimization
- Allows exact definition of objective function (supervised and unsupervised)

EVENT-BASED IMPLEMENTATION OF THE BACKPROPAGATION ALGORITHM FOR SPIKING NEURONS

- Dynamic error ternarization by second integrator U
- Translates SNN dynamic precision to BP
- Accumulations and comparisons only
- Promising preliminary results on MNIST (99.05% with CNN)

[&]quot;Ternarized gradients for efficient on-chip training of spiking neural networks", J. C. Thiele, O. Bichler & A. Dupret, Cognitive Computing 2018

[&]quot;Retro-propagation d'Erreurs Sous Forme Impulsionnelle Dans Un Réseau De Neurones Impulsionnels", J. C. Thiele & O. Bichler, European Patent under Review

DNEURO

RTL HW library

- Set of DNN layer kernels optimized in RTL
 - Generic RTL
 - Support convolutional layers... (Fully-CNN)
 - Today: fully connected, convolution and max pooling layers
 - Plan: unit map connectivity and stride support

Fully automatic DNN RTL generation

Dataflow computation

Early projection performances (ongoing work)

 e.g. 250 GOPS on Virtex 7 UltraScale+ VU7P @100MHz (~20W)

Future works

- Performance optimizations (e.g. use of DSP, increase of frequency...)
- New DNN layers support (e.g. FasterRCNN...)

EXAMPLE OF SPIKE-CODING RESULTS

Network for MNIST database

	Frame DNN	Spiking DNN
Quantization	Yes	Yes
Approx. computing	No	Yes
Base operation	Multiply-Accumulate (MAC)	Accumulate only
Activation function	Non-linear function	Threshold (+ refractory period)*
Parallelism	Spatial	Spatial and temporal
Memory reutilisation	Yes	No

^{*}Not required for ReLU activation function

	Frame		Spiking			
	Score MACs		Δ	Score	spikes/MAC	
MNIST ReLU	98.1%	94k	5	98.1%	1.27	

list ceatech

TRANSPOSITION PRINCIPLE

"Formal" neural network model

Multiply-Accumulate (MAC) + non-linear operation

$$y_j = h\left(\sum_i x_i.w_{ij}\right)$$

"Spiking", rate-based equation equivalence

- Neuron model: Integrate & Fire (IF)
- Neuron thresholds: $x_{th+} > 0$ and $x_{th-} < 0$
 - Integration is reset to its value minus $x_{th \, sign(n_i)}$
- Input / output spikes over duration T_{acc} : n_i / n_j

Approximation for $n_i \gg 1$:

$$\frac{n_j}{T_{acc}} \approx \frac{\sum_i n_i \cdot w_{ij}}{\left| x_{th \ sign(n_j)} \right| \cdot T_{acc}}$$

Mathematical convergence

→ use the result of frame-based learning in spike

NEURON DISTRIBUTION INTO NEUROSPIKE

 $I = 8 \times 8$, $C = 3 \times 3$, $O = 6 \times 6$

In NeuronSpike the @neuron is defined by (@SPE, @I)

list ceatech

ADDRESSING NEURONS

Nb SPE = size of filter max
$$(C_{elm_{MAX}})$$

Max 4 possibilities of @I per input spike

The number of SPE is independent of the number of neurons The number of SPE = $C_{elm_{MAX}}$ = $MAX(NbC_{neuro})$

→ Full hardware sharing between neurons

list ceatech

SHARING THE WEIGHTS

■ The distributed @

Addressing vector based on the departure to arrival distance

